90 research outputs found
Picosecond Transient Thermoreflectance: Time-Resolved Studies of Thin Film Thermal Transport
The advent of new and sophisticated material growth processes (molecular beam epitaxy, chemical vapor deposition and ion sputter deposition) has produced new exotic materials such as amorphous alloys and compositionally modulated structures [1]. The atomic level structure of these materials can be proved by techniques such as x-ray diffraction. The electrical and thermal transport properties are also used to characterize these materials, which are usually deposited as thin films onto supporting substrates. Although the substrate may be electrically isolated from the film, complete thermal isolation is more difficult to achieve and thermal transport measurements are complicated.</p
Towards the clinical implementation of pharmacogenetics in bipolar disorder.
BackgroundBipolar disorder (BD) is a psychiatric illness defined by pathological alterations between the mood states of mania and depression, causing disability, imposing healthcare costs and elevating the risk of suicide. Although effective treatments for BD exist, variability in outcomes leads to a large number of treatment failures, typically followed by a trial and error process of medication switches that can take years. Pharmacogenetic testing (PGT), by tailoring drug choice to an individual, may personalize and expedite treatment so as to identify more rapidly medications well suited to individual BD patients.DiscussionA number of associations have been made in BD between medication response phenotypes and specific genetic markers. However, to date clinical adoption of PGT has been limited, often citing questions that must be answered before it can be widely utilized. These include: What are the requirements of supporting evidence? How large is a clinically relevant effect? What degree of specificity and sensitivity are required? Does a given marker influence decision making and have clinical utility? In many cases, the answers to these questions remain unknown, and ultimately, the question of whether PGT is valid and useful must be determined empirically. Towards this aim, we have reviewed the literature and selected drug-genotype associations with the strongest evidence for utility in BD.SummaryBased upon these findings, we propose a preliminary panel for use in PGT, and a method by which the results of a PGT panel can be integrated for clinical interpretation. Finally, we argue that based on the sufficiency of accumulated evidence, PGT implementation studies are now warranted. We propose and discuss the design for a randomized clinical trial to test the use of PGT in the treatment of BD
TLR2 and Nod2 Mediate Resistance or Susceptibility to Fatal Intracellular Ehrlichia Infection in Murine Models of Ehrlichiosis
Our murine models of human monocytic ehrlichiosis (HME) have shown that severe and fatal ehrlichiosis is due to generation of pathogenic T cell responses causing immunopathology and multi-organ failure. However, the early events in the liver, the main site of infection, are not well understood. In this study, we examined the liver transcriptome during the course of lethal and nonlethal infections caused by Ixodes ovatus Ehrlichia and Ehrlichia muris, respectively. On day 3 post-infection (p.i.), although most host genes were down regulated in the two groups of infected mice compared to naïve counterparts, lethal infection induced significantly higher expression of caspase 1, caspase 4, nucleotide binding oligomerization domain-containing proteins (Nod1), tumor necrosis factor-alpha, interleukin 10, and CCL7 compared to nonlethal infection. On day 7 p.i., lethal infection induced highly significant upregulation of type-1 interferon, several inflammatory cytokines and chemokines, which was associated with increased expression levels of Toll-like receptor-2 (TLR2), Nod2, MyD88, nuclear factor-kappa B (NF-kB), Caspase 4, NLRP1, NLRP12, Pycard, and IL-1β, suggesting enhanced TLR signals and inflammasomes activation. We next evaluated the participation of TLR2 and Nod2 in the host response during lethal Ehrlichia infection. Although lack of TLR2 impaired bacterial elimination and increased tissue necrosis, Nod2 deficiency attenuated pathology and enhanced bacterial clearance, which correlated with increased interferon-γ and interleukin-10 levels and a decreased frequency of pathogenic CD8+ T cells in response to lethal infection. Thus, these data indicate that Nod2, but not TLR2, contributes to susceptibility to severe Ehrlichia-induced shock. Together, our studies provide, for the first time, insight into the diversity of host factors and novel molecular pathogenic mechanisms that may contribute to severe HME. © 2013 Chattoraj et al
Macular hole formation, progression, and surgical repair: case series of serial optical coherence tomography and time lapse morphing video study
<p>Abstract</p> <p>Background</p> <p>To use a new medium to dynamically visualize serial optical coherence tomography (OCT) scans in order to illustrate and elucidate the pathogenesis of idiopathic macular hole formation, progression, and surgical closure.</p> <p>Case Presentations</p> <p>Two patients at the onset of symptoms with early stage macular holes and one patient following repair were followed with serial OCTs. Images centered at the fovea and at the same orientation were digitally exported and morphed into an Audiovisual Interleaving (avi) movie format. Morphing videos from serial OCTs allowed the OCTs to be viewed dynamically. The videos supported anterior-posterior vitreofoveal traction as the initial event in macular hole formation. Progression of the macular hole occurred with increased cystic thickening of the fovea without evidence of further vitreofoveal traction. During cyst formation, the macular hole enlarged as the edges of the hole became elevated from the retinal pigment epithelium (RPE) with an increase in subretinal fluid. Surgical repair of a macular hole revealed initial closure of the macular hole with subsequent reabsorption of the sub-retinal fluid and restoration of the foveal contour.</p> <p>Conclusions</p> <p>Morphing videos from serial OCTs are a useful tool and helped illustrate and support anterior-posterior vitreofoveal traction with subsequent retinal hydration as the pathogenesis of idiopathic macular holes.</p
Regulation of Kainate Receptor Subunit mRNA by Stress and Corticosteroids in the Rat Hippocampus
Kainate receptors are a class of ionotropic glutamate receptors that have a role in the modulation of glutamate release and synaptic plasticity in the hippocampal formation. Previous studies have implicated corticosteroids in the regulation of these receptors and recent clinical work has shown that polymorphisms in kainate receptor subunit genes are associated with susceptibility to major depression and response to anti-depressant treatment. In the present study we sought to examine the effects of chronic stress and corticosteroid treatments upon the expression of the mRNA of kainate receptor subunits GluR5-7 and KA1-2. Our results show that, after 7 days, adrenalectomy results in increased expression of hippocampal KA1, GluR6 and GluR7 mRNAs, an effect which is reversed by treatment with corticosterone in the case of KA1 and GluR7 and by aldosterone treatment in the case of GluR6. 21 days of chronic restraint stress (CRS) elevated the expression of the KA1 subunit, but had no effect on the expression of the other subunits. Similarly, 21 days of treatment with a moderate dose of corticosterone also increased KA1 mRNA in the dentate gyrus, whereas a high corticosterone dose has no effect. Our results suggest an interaction between hippocampal kainate receptor composition and the hypothalamic-pituitary-adrenal (HPA) axis and show a selective chronic stress induced modulation of the KA1 subunit in the dentate gyrus and CA3 that has implications for stress-induced adaptive structural plasticity
Structural and Functional Hierarchy in Photosynthetic Energy Conversion—from Molecules to Nanostructures
Basic principles of structural and functional requirements of photosynthetic energy conversion in hierarchically organized machineries are reviewed. Blueprints of photosynthesis, the energetic basis of virtually all life on Earth, can serve the basis for constructing artificial light energy-converting molecular devices. In photosynthetic organisms, the conversion of light energy into chemical energy takes places in highly organized fine-tunable systems with structural and functional hierarchy. The incident photons are absorbed by light-harvesting complexes, which funnel the excitation energy into reaction centre (RC) protein complexes containing redox-active chlorophyll molecules; the primary charge separations in the RCs are followed by vectorial transport of charges (electrons and protons) in the photosynthetic membrane. RCs possess properties that make their use in solar energy-converting and integrated optoelectronic systems feasible. Therefore, there is a large interest in many laboratories and in the industry toward their use in molecular devices. RCs have been bound to different carrier matrices, with their photophysical and photochemical activities largely retained in the nano-systems and with electronic connection to conducting surfaces. We show examples of RCs bound to carbon-based materials (functionalized and non-functionalized single- and multiwalled carbon nanotubes), transitional metal oxides (ITO) and conducting polymers and porous silicon and characterize their photochemical activities. Recently, we adapted several physical and chemical methods for binding RCs to different nanomaterials. It is generally found that the P(+)(Q(A)Q(B))(−) charge pair, which is formed after single saturating light excitation is stabilized after the attachment of the RCs to the nanostructures, which is followed by slow reorganization of the protein structure. Measuring the electric conductivity in a direct contact mode or in electrochemical cell indicates that there is an electronic interaction between the protein and the inorganic carrier matrices. This can be a basis of sensing element of bio-hybrid device for biosensor and/or optoelectronic applications
- …
