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The advent of new and sophisticated material growth processes (molecu­
lar beam epitaxy, chemical vapor deposition and ion sputter deposition-) 
has produced new exotic materials such as amorphous alloys and composi­
tionally modulated structures [1]. The atomic level structure of these 
materials can be proved by techniques such as x-ray diffraction. The 
electrical and thermal transport properties are also used to characterize 
these materials, which are usually deposited as thin films onto supporting 
substrates. Although the substrate may be electrically isolated from 
the film, complete thermal isolation is more difficult to achieve and 
thermal transport measurements are complicated. 

A variety of opti,cal, non-contact techniques have been developed 
to measure the thermal diffusivity of thin films: For instance, pulsed 
photo-thermal radiometry can be used to measure the thermal diffusivity 
of free standing metal films of known thickness [2]. This technique 
uses short laser pulses to heat the sample surface, followed by a time­
resolved measurement of the black-body radiat ion to determine the surface 
cooling rate. Another method, photothermal deflectometry, has been used 
to determine thermal properties by measuring the optically-induced thermo­
elastic deformation of the surface or the heating induced refractive 
index gradient in a gas above the surface [3,4]. More recently, Rosencwaig 
et al. [5] have shown that a modulated thermoreflectance measurement 
is an equally sensitive method which can yield the same informat ion as 
the deflection techniques. All of these techniques have been demonstrated 
with relatively low time resolution measurements, and in order to determine 
supported thin film thermal properties a knowledge of the substrate thermal 
properties is required. As a result, the accuracy of determining the 
film thermal diffusivity will depend on the precis ion to which the substrate 
thermal properties are known: The thermal impedance of the film-substrate 
interface can also complicate the determinat ion of the film thermal proper­
ties. Although the theoretical treatments of heat flow in a simple multi­
layer system are correct, they only account for heat flow across ideal 
boundaries where there is an abrupt change in thermal properties [6-9]. 
In reality. many interfacial boundaries are characterized by strains, 
contaminat ion and chemical interactions which can alter the thermal proper­
ties relative to the bulk values of the constituent materials. Detailed 
knowledge of the interfacial properties can be difficult to obtain and 
modelling of the heat flow may not be accurate. 
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As a solution to this problem, we have developed a technique which . 
uses u.1tra-short laser pulses to generate transient thermoreflectance (TTR) 
signals which correlate with the transport of heat away from the film sur­
face. T~e-resolved measurement of these signals can be used to determine 
the thermal diffusivity of a supported film, independent of the substrate. 
In the following we will review the time domain analysis of thermal trans­
port relevant to our technique. We will show how TTR can be used to study 
the thermal impedance of interfaces, in addition to measuring the thermal 
diffusivity of single element metal films. We will also show that on the 
picosecond timescale some interesting deviations from the standard heat 
flow equation can occur. 

TBERMAL TRANSPORT: TIME DOMAIN 

In the classical theory of heat conduction, the heat flux J is 
directly proportional to the temperature gradient. For the case of one 
dimensional heat flow, this relationship can be expressed as 

J(z,t) = _K~;(z,t) 

where K is the thermal conductivity and T is the temperature. 
flux is combined with the energy conservat ion equation 

~(z,t) _ ~(z,t) + P( t) 
6t - 6z z, 

we obtain the standard parabolic heat diffusion equation 

2 
~(z,t) _ K6 T(z,t) + P( t) 6t - 2 z, 

6z 

(1) 

When this 

(2) 

(3) 

where P(z,t) is a source term and C is the material heat capacity. 

We are interested in the time response of the temperature increase 
produced by an incident laser pulse. In the case of metals, the optical 
radiation will be exponentially attenuated as a function of distance into 
the metal. If we assume a Gaussian shaped optical pulse of duration r, 
and intensity 1, the source term in Eq. (3) becomes 

2 
P(z,t) = I(l_R)aRe-aze-(t/r) (4) 

where R and a are the metal reflectivity and absorbtivity, respectively. 
Substituting this heating source term into Eq. (3) and solving for the 
surf ace temperature as a function of time results in the curve shown in 
Fig. 1. This result represents the general response of a metal to an 
optical heating pulse with duration short compared to the time required 
for the heat to diffuse out of the heated volume. Bere we have asssumed 
a 4 psec wide heating pulse, and the horizontal axis is labelled in delay 
time units; that is, time relative to the arrival of the heating pulse at 
the surface. Since the heating pulse has a finite duration, the zero 
time delay is defined to occur at the peak of the heating pulse inten­
sity. 

. In thermal transport measurements, the dec·ay time of the temperature 
is the quantity of interest. This decay time is directly related to the 
thermal diffusivity of the material, which is defined as 

" = K/C (5) 
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Figure 1. Calculation of the normalized 
temperature increase of the 
surf ace of a metal. 

If the optical power is deposited at the surf ace of the medium, instead 
of in the heating depth l/a, then ~ would solely determine the decay time 
of the surf ace temperature. In reality, however, the finite heating 
depth must be accounted for in determining the temperature decay profile. 
As a result, the decay time depends on a as well. This is understandable 
since we are measuring the transport of hea~ away from the surface, and 
this occurs in a tim~50n2the order of 10/~a. In Fig. 1, a thermal dif­
fusivity of 2.3 x 10 m /sec and a heating depth of l/a = 14 nm were 
used. 

Our discussion sa far has only dealt with the macroscopic nature of 
thermal transport described by Eq. (3). Some interesting phenomena can 
be described if we consider the microscopic details of light absorption 
and thermal transport. In metals, the thermal conduction is dominated by 
the free electrons which absorb a fraction of the incoming optical pulse. 
The electrons which absorb the light thermalize very rapidly with the 
surrounding electrons and then cool by transferring energy to the metal 
lattice via electron-phonon scattering. This scattering process proceeds 
simultaneously with the diffusion of thermal energy down the temperature 
gradient. In Eq. (3), the thermal conductivity is that of the electrons, 
whereas the heat capacity used is that of the lattice. This is because 
the electronic thermal conductivity is much larger than that of the lat­
tice. As a re suIt of the electron-phonon coupling, the lattice heat 
capacity is used since it is much larger than that of the electrons. 
Thus the thermal diffusion is a coupled process, involving both the elec­
trons and the lattice ion cores in a metal. 

The validity of Eq. (3) in describing thermal transport really 
depends on the timescale we are considering. Clearly the electron-Iat­
tice temperature equilibration requires a finite amoun~l~f time. In 
metals this time is on the order of one picosecond (10 sec). Thus for 
heating pulsewidths of tens of picoseconds or longer, Eq. (3) describes 
both the electron and lattice temperatures. When the optical heating 
pulsewidth is comparable to or shorter than this equilibration time, then 
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we would expect a nonequilibrium temperature difference to exist between 
the electrons and the lattice. The fact that the electrons can be ele­
vated to a temperature above the lattice results from the relatively 
small electron heat capacity. 

Under these conditions the thermal transport and cooling process 
must be modeled by a two-temperature system of coupled differential equa­
tions, describing the electron temperature T and the lattice temperature 
T. e 

1 AT oTe(z,t) = Ko22Te(z,t) _ G(T -T.) + P(z,t) (6) 
e ot oz e 1 

and 
C oT.(z,t) = G(T -T.) 
i ot1 e 1 

(7) 

In Eqs. (6) and (7), A is the electronic constant of heat capacity 
(linear in temperature, T ), C. is the lattice heat capacity and G is the 
electron-phonon coupling ~onst~nt. 

This nonequilibrium situation was postulated and modelled theoreti­
cally nearly thirty years ago [12]. Only recently have we been able to 
observe this phenomenon using picosecond pulsed lasers [13,14]. This 
nonequilibrium heating can be obse!ygd in both semiconductors and metals. 
With the advent of femtosecond (10 sec) pulsed lasers, time-resolved 
measurements of hot electron transport and electron-phonon relaxation are 
possible. On these ultrashort timescales, Eq. (6) predicts that hot 
electrons can be generated which transport heat with a thermal diffusi­
vity much larger than that of the equilibrium transport in Eq. (3). That 
is, K/AT »K/C., ior temperature excursions of several tens oi degrees. 

e l. 

A solution to the coupled equations (6) and (7) can also be iound by 
the method oi iinite diiierences, and results for the metal copper are 
shown in Fig. 2. We have used a heating pulsewidth oi 5 psec and a pulse 
energy oi 0.5 nJ, and during this time we see that the ele~tron tempera­
ture does exceed that lattice temperature by a iew degrees [14]. The use 
of substantially shorter pulses results in a larger electron-lattice 
temperature mismatch, and the equilibration time exceeds the laser pul se­
width. Such studies are currently in progress using 80 fsec visible 
light pulses [15]. 
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heating oi copper electrons. The 
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The theI1!lal transport processes we have discussed thus far have 
been based upon the heat flux of Eq. (1). When this flux is combined 
with the energy conservation equation, a heat diffusion equation is ob­
tained. This equation predicts the instantaneous propagation of a theI1!lal 
disturbance throughout the medilUll (see the Greens function in [10]). 
Despite this unrealistic result, these diffusion equations are quite 
accurate in modelling theI1!lal transport in rost si tuations. However, 
it has been shown that in situations involving transient heating at vel)' 
low temperatures, the classical diffusion theol)' breaks down. TheI1!lal 
transport takes the form of wave propagat ion with a finite velocity. 
This phenomena is referred to as second sOlUld, in thatphonon heat pulses 
have been ob~erved to propagate macroscopic distances in a manner analogous 
to phonon acoustic pulses [16]. 

This deviation from the diffusion model can be accounted for by 
postulating a new heat flux equation 

J +".. aJ = _KaT 
r at az (8) 

When this equation is combined with the energy conservation equation (2), 
a hyperbolic differential equation is obtained 

1 a2 T + 1 aT _ a22 T P ~ ap 
-2 at2 ~ at - az + K + -2 at (9) 
v v 

In these equations, a propagation velocity v appears which is related to 
the thermal diffusivity ~ by the relation 

2 
v = ~/".. r (10) 

where".. is the thermal carrier relaxation time (electron-phonon relaxa­
tion tifue in conductors). 

It is clear that in the limit of zero relaxation time, the propaga­
tion velocity becomes infinite and Eq. (9) reduces to the diffusion equa­
tion. Alternatively, if transient heating occurs on a timescale which 
far exceeds ".. , then one would expect the diffusive nature of heat trans­
port to apply: At very low temperatures(N1K) in solids, when".. is very 
large, the wave nature of thermal transport would become more a~parent. 
Experiments have confirmed this phenomenon in solid helium and NaF crys­
taIs, where phonon mean free paths are comparable to the sample dimen­
sions [17,18]. 

Beyond these rare situations, it is not clear that Eq. (9) is appli­
cable or even necessary to describe thermal transport. Nevertheless 
there exists a core of literature on this subject, and solutions to the 
hyperbolic heat flow equation under a variety of conditions are well 
documented [19]. With the recent advances in generating ultrashort laser 
pulses for annealing and melting applications, it is possible that the 
wave nature of thermal propagation will be an important feature to consi­
der in modelling heat transport at early times. In cases where film 
thicknesses are less than carrier mean free paths and heating pulsewidths 
are comparable to carrier scattering times, wave propagation at elevated 
temperatures may be observable. 80 far such observations have not been 
made, and the relevance of this form of transport is either overlooked or 
dismissed. It is a serious undertaking to generate realistic solutions 
to Eq. (9), and no attempt to do so will be given in this work. 
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TRANSIENT THERMDREFLECTANCE 

Transient thermoreflectance (TTR) is a technique which uses two 
synchronous picosecond laser pulses to measure thermal diffusion. The 
first pulse produces ultra-fast heating to peak temperatures on the order 
of 10K above ambient. The second pulse has a variable delay with respect 
to the heating pulse, and it is us~g to measure the thermally-induced 
change in surf ace reflectivitY(N10 jK). For small temperature devia­
tions the reflectivity change is linear in temperature, and a temperature 
profile over several hundred picoseconds can be measured [11,20]. The 
penetration depth of visible light in a metal is approximately 20 nm, and 
thermal diffusion out of this region occurs in a few hundred picoseconds. 
Therefore, for film thicknesses of 100 nm or greater, the TTR measurement 
can be completed before substrate effects become important. 

Since the heating depth is small compared to the diameter of the 
illuminated surface, a one-dimensional heat flow model can be fit to our 
measurements. Dur fitting routine solves Eq. (3) by the method of finite 
differences. The routine involves a two parameter fit with the thermal 
diffusivity and a constant scaling factor as the free parameters. The 
accuracy of the fit issensitive to the value of the optical absorption 
coefficient of the material, since we are monitor ing the flow of heat out 
of the optical heating depth. We determine the complex refractive index 
of our samples by measuring the ratio of s-polarized to p-polarized 
reflectivity for both 300 and 700 angles of incidence. We fit these 
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Ffgure 3. Best fit solution of the heat conduction equation to the 
normalized TTR measurement (solid line) of single crystal 
Ni. The cross correlation of the heating and probing pulses 
Oong dash line) is also shown. 
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measurements to the Fresnel reflection formula and determine the real(n) 
and imaginary (k) parts of the metal refractive index. The imaginary 
part is then used to calculate the absorbtivity from the relation a = 
4wk/~, where ~ is the heating laser wavelength. 

The validity of our approach for measuring the thermal diffusivity 
was initially tested by TTR measurements on bulk single-crystal nickel 
(110). Figure 3 shows the normalized TTR signal versus the time delay of 
the probing pulse relative to the heating pulse. Superimposed on the 
data is the best fit solution of Eq. (3) at z=O, calculated using a heat­
ing pulsewidth of 4 psec (full-width-at-half-maximum). The mismatch 
between the fitted solution and the data at early times is a re suIt of 
convolution effects in the measured data which are not accounted for in 
the calculated temperature profile. These effects are only important at 
early times and we commence our fitting routine after a time delay of 20 
psec. Thus the actual details of the heating pulse shape are not impor­
tant [Il]. The measured cross correlation of the heating- and probing­
pulse is also shown in Fig. 3 to demonstrate the effective time resolu­
tion of our measurement and establish the zero time ~gla~ position. The 
thermal.diffusivity fitted by our mo~gl ~s ~ = 2.1x10 m /sec, compared 
with the literature value of_~.23x10 m /sec [21]. The mean square 
error per data point is 5x10 . 

ie have used TTR to measure. the thermal diffusivity of deposited 
single element films and compositionally modulated Ni-Ti and Ni-Zr films 
[Il]. ie find that the thermal diffusivity of the modulated metal films 
is substantially smaller than that measured for the constituent single 
element films. This indicates that the interface between two different 
metallic layers can alter the thermal transport in a direction perpendi­
cular to the film plane. Dur goal is to use TTR to measure the thermal 
impedance of interfaces by fitting our results to a one-dimensional heat 
flow model which includes the interfacial boundary condition [9] 

aT - aT + 1 + -
K1 az1(1 ,t) = K2 at2(1 ,t) = ;[T2(1 ,t)-T1(1 ,t)] (Il) 

Kl and K2 are the thermal conductivities of the metals on either side of 
tfie interface located at z=l. The thermal impedance of the interface is 
p. 

ie are currently implementing a fitting procedure which solves a 
heat flow equation appropriate to each single element region and coupled 
by the boundary condition in Eq. (Il). ie will use measurements of ther­
mal diffusivity in single element films as input parameters to character­
ize the constituents in single interface, bilayer metal films. Dur 
fitting routine will then determine the interfacial thermal impedance by 
fitting solutions of the coupled heat flow equations to the TTR measure­
ment on the bilayer film. 

Although the fitting procedure is not yet operational, we have per­
formed a ser ies of measurements of thermal transport across single metal­
metal interfaces. The samples used for these measurements were fabri­
cated to consist of a 30 nm Ni cap over a 300 nm metal underlayer of 
either Cu, Mo, Ti or Zr. The samples were prepared in a dual ~~urce 
magnetron sputter deposition system with a base pressure of 10 Torr. 
Silicon wafers were used as substrates under the simultaneously operat­
ing, shuttered sputter sources. Depostion rates !3re held constant at 
0~5 nm/sec and the sputtering atmosphere was 2x10 Torr of argon. 
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A graphic example of the degradation in thermal transport produced 
by the presence of a single interface is shown in Fig. 4. TTR measure­
ments are shown for both single element Ni and Ti films and for a Ni-Ti 
bilayer film. (AII films are produced with the same sputtering condi­
tions.) The decrease in thermal transport due to the metal-metal inter­
face is clearly demonstrated and this effect is also observed in the 
other bilayer films [22]. 

Tabulated in Table 1 are the results of fitting our TTR measurements 
to a single heat flow equation (3) and determining an effective thermal 
diffusivity of the bilayer film. We have included measurements of the 
film optical properties as well. Figure 5 shows the TTR measurements for 
alI four bilayer films investigated. The thermal diffusion is faster in 
the Ni-Cu film, followed by the Ni-Mo bilayer film. This ordering would 
be expected since the thermal diffusivities of Cu and Mo are larger than 
Ni, Ti and Zr. 
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A somewhat unexpected result is observed in the relative thermal 
diffusion of the Ni-Ti and Ni-Z= bilayer films. In this case we find 
that the diffusion in the Ni-Ti film is faster than in the Ni-Zr film, 
even though the thermal diffusivity of Zr is larger than that of Ti(see 
Table 1). le believe this revers al in trend may be attributed to the 
fact that the thermal impedance of the Ni-Zr interface is larger as a 
re suIt of a larger atomic lattice mismatch and the ensuing higher degree 
of interfacial disorder. The relative lattice mismatch of the bilayer 
samples is calculated from literature values of nearest-neighbor lattice 
constants [23], and the results are also contained in Table 1. le find 
that the trend in degradat ion of thermal diffusion due to a metal-metal 
interface is correlated with the relative lattice mismatch of the metal 
constituents. 

Table 1. The measured optical refractive index (n+ik), 
.the absorptivity (a), the best fit thermal dif­
fusivity (K), and the lattice mismatch for hoth 
single element and bilayer films studied. 

Sample n k Q It Lattice 
Mismatch 

(xl07 m- I ) (xlO-8 m2/sec) (%) 
Ni 1.80 3.71 7.4 4.4 -
Mo single 3.07 3.84 7.6 12.5 -
Ti element 2.34 3.28 6.5 1.5 -
Zr 2.13 3.31 6.6 2.5 -

Ni-Cu 1.73 3.70 7.3 32.0 2.8 
Ni-Mo bilayer 1.80 3.85 7.6 6.1 9.2 
Ni-Ti film 1.63 3.54 7.0 0.42 16.1 
Ni-Zr 1.81 3.80 7.5 0.33 27.3 

The real atomic structure of our samples is currently being investi­
gated by x-ray diffraction and the details will be presented in a later 
publication. le expect this analysis to provide more accurate mismatch 
values and a quantitative correlation with the interfacial impedance may 
be possible. What is clear at this point is that even between two 
metals, interfacial thermal impedance has a dramatic effect on thermal 
transport. 

CDNCLUSIDNS 

We have discussed the time domain analysis of the one-dimensional 
heat conduction equation, with the purpose of interpreting our picosecond 
time-resolved measurements of thermal diffusion in thin metal films. Dur 
measurement technique is generally nonperturbative and provides a means 
of determining thin film thermal diffusivity independent of the support­
ing substrate. le have shown that the ability to do this is important 
because of the degradat ion in thermal transport produced by the presence 
of an interface. le expect that an additional advantage of ultrafast 
time-resolved measurements is the ability to measure interface thermal 
impedances in novel thin film structures. 

le have shown that in the case of ultra-short heating, interesting 
nonequilibrium thermal transport can occur. This regime of thermal 
transport is important to fundamental studies of ballistic electron 
transport and electron-phonon relaxation in metals and semiconductors. 
The advent of laser heating sources in the femtosecond time regime may 
also require that we alter our conventional view of thermal transport as 
being diffusive in nature, at least over dimensions comparable to carrier 
mean free paths. Such dimensions are becoming more relevant as new 
growth techniques are being used to fabricate compositionally modulated 
materials with repeat distances on the atomic scale. 
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