44 research outputs found

    Structural assessment of PITX2, FOXC1, CYP1B1, and GJA1 genes in patients with Axenfeld-Rieger syndrome with developmental glaucoma

    No full text
    PURPOSE. Axenfeld-Rieger (AR) is an autosomal dominant disorder with phenotypic heterogeneity characterized by anterior segment dysgenesis, facial bone defects, and redundant periumbilical skin. The PITX2 gene, on chromosome 4q25, and the FOXC1 gene, on chromosome 6p25, have been implicated in the different phenotypes of the syndrome through mutational events. Recently, the CYP1B1 gene was found to be associated with Peters' anomaly, and the gene associated with oculoden-todigital dysplasia syndrome, which presents some similarities with AR, was identified ( connexin 43 - GJA1 gene). The purpose of this study was to evaluate PITX2, FOXC1, CYP1B1, and GJA1 gene mutations in Brazilian families with AR. METHODS. Eight unrelated patients affected by AR ( all eight with glaucoma and three with systemic manifestations) and their families were ophthalmologically evaluated and their blood was collected for DNA extraction purposes. The coding regions of PITX2, FOXC1, CYP1B1, and GJA1 genes were completely evaluated through direct sequencing. RESULTS. The frequency of mutations in the FOXC1, GJA1, PITX2, and CYP1B1 genes in this study were 25%, 12.5%, 0% and 0%, respectively. In the FOXC1 gene, two GGC triplet insertions (GGC375ins and GGC447ins) defined as a polymorphism, and two new mutations-a deletion ( 718 to 719delCT) and a nonsense mutation (Trp152STOP)-were identified. One polymorphism (Ala253Val) was identified in the GJA1 gene in the same family presenting the Trp152STOP mutation in the FOXC1 gene. In this family harboring both structural alterations, two patients who carried the GJA1 ( Ala253Val) and FOXC1 ( Trp152STOP) mutations developed less severe glaucoma compared with family members presenting the FOXC1 (Trp152STOP) mutation alone. CONCLUSIONS. Two new structural alterations in the FOXC1 gene and a polymorphism in the GJA1 gene were first described in Brazilian patients with AR and developmental glaucoma. A polymorphism in the GJA1 gene (Ala253Val), for the first time identified in association with AR, raises the possibility of its participation as a modifier gene.O TEXTO COMPLETO DESTE ARTIGO, ESTARÁ DISPONÍVEL À PARTIR DE FEVEREIRO DE 2015.4751803180

    GSTT1, GSTM1, and GSTP1 polymorphisms and chemotherapy response in locally advanced breast cancer

    No full text
    The glutathione S-transferase (GST) family consists of phase II detoxification enzymes that catalyze the conjugation of toxic substances, such as chemotherapeutic agents, to glutathione. We examined whether GSTT1/GSTT1"null", GSTM1/GSTM1"null" and GSTP1Ile 105Ile/GSTP1Ile105Val polymorphisms are associated with different response rates to neoadjuvant chemotherapy in the treatment of stage II and III breast cancer. Forty Brazilian women with invasive ductal adenocarcinoma of the breast submitted to neoadjuvant chemotherapy, using 5-fluorouracil, epirubicin and cyclophosphamide, were genotyped for the GSTT1, GSTM1 and GSTP1 genes. Clinical response was assessed by RECIST criteria. Comparisons were made for the three genes alone and in pairs, as polymorphic and as wildtype combinations and polymorphic/wild-type combinations. We analyzed all possible combinations and their response rate. Patients with the GSTT1/GSTP1105Ile combination were found to have a significantly better response than GSTT1"null"/GSTP1105Val (P = 0.0209) and GSTT1/GSTM1 (P = 0.0376) combinations. Analysis of all possible combinations showed the GSTM1"null" polymorphic genotype to be present in four, and the wild-type GSTP1105Ile in six of the combinations associated with the largest number of responding patients. We found that patients with the GSTT1/GSTP1105Ile wild-type combination had a significantly higher response rate to chemotherapy than patients with the respective polymorphic GSTT1"null"/GSTP1105Val combination or patients with the wildtype GSTT1/GSTM1. The six gene combinations associated with the largest number of responding patients were found to contain the wildtype GSTP1105Ile and the polymorphic-type GSTM1"null". These specific combinations were virtually absent in the combinations with few responding patients.921045105

    The effect of fetal androgen metabolism-related gene variants on external genitalia virilization in congenital adrenal hyperplasia

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The 21-hydroxylase deficiency (21OHD) is caused by CYP21A2 mutations resulting in severe or moderate enzymatic impairments. 21OHD females carrying similar genotypes present different degrees of external genitalia virilization, suggesting the influence of other genetic factors. Single nucleotide variants (SNVs) in the CYP3A7 gene and in its transcription factors, related to fetal 19-carbon steroid metabolism, could modulate the genital phenotype. To evaluate the influence of the 21OHD genotypes and the CYP3A7, PXR and CARSNVs on the genital phenotype in 21OHD females. Prader scores were evaluated in 183 patients. The CYP3A7, PXR and CARSNVs were screened and the 21OHD genotypes were classified according to their severity: severe and moderate groups. Patients with severe genotype showed higher degree of genital virilization (Prader median III, IQR III-IV) than those with moderate genotype (III, IQR II-III) (p<0.001). However, a great overlap was observed between genotype groups. Among all the SNVs tested, only the CAR rs2307424 variant correlated with Prader scores (r(2)=0.253; p=0.023). The CYP21A2 genotypes influence the severity of genital virilization in 21OHD females. We also suggest that the CAR variant, which results in a poor metabolizer phenotype, could account for a higher degree of external genitalia virilization.845482488Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [2008/57616-5, 2008/55546-0]CNPq [305117/2009-2, 305743/2011-2
    corecore