89 research outputs found

    You are Not Welcome: Social Exchanges between Female Spider Monkeys (Ateles geoffroyi)

    Get PDF
    Group living leads to competition for food between group members. Two types of intragroup food competition may occur: scramble competition, in which all group members use the same resource, such that feeding opportunities are equal for everyone; and contest competition, in which some group members monopolize resources through aggression and dominance. In species in which females disperse from the natal group and immigrate into other groups, immigrant females increase group size and thus possibly food competition. Under these circumstances, other females may use aggression to discourage new females from joining the group. We assessed the distribution of aggression, embraces, and kisses among female spider monkeys (Ateles geoffroyi) in relation to group tenure. We recorded social interactions during 1688 10-min focal animal samples on 11 females in Santa Rosa, Costa Rica. We found that aggression was rare between long-term resident females and aggression rates were not higher during feeding than in other contexts, suggesting there was little contest competition. Long-term residents and less recently immigrant females showed higher aggression rates toward the most recent immigrants than toward other females, especially during the first months after a female immigrated, which coincided with the dry season. We did not find similar patterns for embrace and kiss. These results suggest that other females target aggression toward the most recent immigrants to reduce scramble competition. This finding suggests that group tenure should be included in socioecological models for species with female dispersal. © 2017 Springer Science+Business Media, LL

    Aspergillus fumigatus Stimulates the NLRP3 Inflammasome through a Pathway Requiring ROS Production and the Syk Tyrosine Kinase

    Get PDF
    Invasive aspergillosis (IA) is a life-threatening disease that occurs in immunodepressed patients when infected with Aspergillus fumigatus. This fungus is the second most-common causative agent of fungal disease after Candida albicans. Nevertheless, much remains to be learned about the mechanisms by which A. fulmigatus activates the innate immune system. We investigated the inflammatory response to conidia and hyphae of A. fumigatus and specifically, their capacity to trigger activation of an inflammasome. Our results show that in contrast to conidia, hyphal fragments induce NLRP3 inflammasome assembly, caspase-1 activation and IL-1β release from a human monocyte cell line. The ability of Aspergillus hyphae to activate the NLRP3 inflammasome in the monocytes requires K+ efflux and ROS production. In addition, our data show that NLRP3 inflammasome activation as well as pro-IL-1β expression relies on the Syk tyrosine kinase, which is downstream from the pathogen recognition receptor Dectin-1, reinforcing the importance of Dectin-1 in the innate immune response against fungal infection. Furthermore, we show that treatment of monocytes with corticosteroids inhibits transcription of the gene encoding IL-1β. Thus, our data demonstrate that the innate immune response against A. fumigatus infection involves a two step activation process, with a first signal promoting expression and synthesis of pro-IL-1β; and a second signal, involving Syk-induced activation of the NLRP3 inflammasome and caspase-1, allowing processing and secretion of the mature cytokine

    NLRP3 Inflammasome: Key Mediator of Neuroinflammation in Murine Japanese Encephalitis

    Get PDF
    Background: Japanese Encephalitis virus (JEV) is a common cause of acute and epidemic viral encephalitis. JEV infection is associated with microglial activation resulting in the production of pro-inflammatory cytokines including Interleukin-1 b (IL-1b) and Interleukin-18 (IL-18). The Pattern Recognition Receptors (PRRs) and the underlying mechanism by which microglia identify the viral particle leading to the production of these cytokines is unknown. Methodology/Principal Findings: For our studies, we have used murine model of JEV infection as well as BV-2 mouse microglia cell line. In this study, we have identified a signalling pathway which leads to the activation of caspase-1 as the key enzyme responsible for the maturation of both IL-1b and IL-18 in NACHT, LRR and PYD domains-containing protein-3 (NLRP3) dependent manner. Depletion of NLRP3 results in the reduction of caspase-1 activity and subsequent production of these cytokines. Conclusion/Significance: Our results identify a mechanism mediated by Reactive Oxygen Species (ROS) production and potassium efflux as the two danger signals that link JEV infection to caspase-1 activation resulting in subsequent IL-1b an

    Is the inflammasome a potential therapeutic target in renal disease?

    Get PDF
    The inflammasome is a large, multiprotein complex that drives proinflammatory cytokine production in response to infection and tissue injury. Pattern recognition receptors that are either membrane bound or cytoplasmic trigger inflammasome assembly. These receptors sense danger signals including damage-associated molecular patterns and pathogen-associated molecular patterns (DAMPS and PAMPS respectively). The best-characterized inflammasome is the NLRP3 inflammasome. On assembly of the NLRP3 inflammasome, post-translational processing and secretion of pro-inflammatory cytokines IL-1β and IL-18 occurs; in addition, cell death may be mediated via caspase-1. Intrinsic renal cells express components of the inflammasome pathway. This is most prominent in tubular epithelial cells and, to a lesser degree, in glomeruli. Several primary renal diseases and systemic diseases affecting the kidney are associated with NLRP3 inflammasome/IL-1β/IL-18 axis activation. Most of the disorders studied have been acute inflammatory diseases. The disease spectrum includes ureteric obstruction, ischaemia reperfusion injury, glomerulonephritis, sepsis, hypoxia, glycerol-induced renal failure, and crystal nephropathy. In addition to mediating renal disease, the IL-1/ IL-18 axis may also be responsible for development of CKD itself and its related complications, including vascular calcification and sepsis. Experimental models using genetic deletions and/or receptor antagonists/antiserum against the NLRP3 inflammasome pathway have shown decreased severity of disease. As such, the inflammasome is an attractive potential therapeutic target in a variety of renal diseases

    Malarial Hemozoin Activates the NLRP3 Inflammasome through Lyn and Syk Kinases

    Get PDF
    The intraerythrocytic parasite Plasmodium—the causative agent of malaria—produces an inorganic crystal called hemozoin (Hz) during the heme detoxification process, which is released into the circulation during erythrocyte lysis. Hz is rapidly ingested by phagocytes and induces the production of several pro-inflammatory mediators such as interleukin-1β (IL-1β). However, the mechanism regulating Hz recognition and IL-1β maturation has not been identified. Here, we show that Hz induces IL-1β production. Using knockout mice, we showed that Hz-induced IL-1β and inflammation are dependent on NOD-like receptor containing pyrin domain 3 (NLRP3), ASC and caspase-1, but not NLRC4 (NLR containing CARD domain). Furthermore, the absence of NLRP3 or IL-1β augmented survival to malaria caused by P. chabaudi adami DS. Although much has been discovered regarding the NLRP3 inflammasome induction, the mechanism whereby this intracellular multimolecular complex is activated remains unclear. We further demonstrate, using pharmacological and genetic intervention, that the tyrosine kinases Syk and Lyn play a critical role in activation of this inflammasome. These findings not only identify one way by which the immune system is alerted to malarial infection but also are one of the first to suggest a role for tyrosine kinase signaling pathways in regulation of the NLRP3 inflammasome

    Inflammasome-Mediated IL-1β Production in Humans with Cystic Fibrosis

    Get PDF
    Inflammation and infection are major determinants of disease severity and consequently, the quality of life and outcome for patients with cystic fibrosis (CF). Interleukin-1 beta (IL-1β) is a key inflammatory mediator. Secretion of biologically active IL-1β involves inflammasome-mediated processing. Little is known about the contribution of IL-1β and the inflammasomes in CF inflammatory disease. This study examines inflammasome-mediated IL-1β production in CF bronchial epithelial cell lines and human patients with CF.Bronchial epithelial cell lines were found to produce negligible amounts of basal or stimulated IL-1β compared to hematopoeitic cells and they did not significantly upregulate caspase-1 activity upon inflammasome stimulation. In contrast, peripheral blood mononuclear cells (PBMCs) from both CF and healthy control subjects produced large amounts of IL-1β and strongly upregulated caspase-1 activity upon inflammasome stimulation. PBMCs from CF patients and controls displayed similar levels of caspase-1 activation and IL-1β production when stimulated with inflammasome activators. This IL-1β production was dependent on NF-κB activity and could be enhanced by priming with LPS. Finally, chemical inhibition of CFTR activity in control PBMCs and THP-1 cells did not significantly alter IL-1β or IL-8 production in response to P. aeruginosa.Hematopoeitic cells appear to be the predominant source of inflammasome-induced pro-inflammatory IL-1β in CF. PBMCs derived from CF subjects display preserved inflammasome activation and IL-1β secretion in response to the major CF pathogen Pseudomonas aeruginosa. However, our data do not support the hypothesis that increased IL-1β production in CF subjects is due to an intrinsic increase in NF-κB activity through loss of CFTR function

    P2 purinergic receptor modulation of cytokine production

    Get PDF
    Cytokines serve important functions in controlling host immunity. Cells involved in the synthesis of these polypeptide mediators have evolved highly regulated processes to ensure that production is carefully balanced. In inflammatory and immune disorders, however, mis-regulation of the production and/or activity of cytokines is recognized as a major contributor to the disease process, and therapeutics that target individual cytokines are providing very effective treatment options in the clinic. Leukocytes are the principle producers of a number of key cytokines, and these cells also express numerous members of the purinergic P2 receptor family. Studies in several cellular systems have provided evidence that P2 receptor modulation can affect cytokine production, and mechanistic features of this regulation have emerged. This review highlights three separate examples corresponding to (1) P2Y6 receptor mediated impact on interleukin (IL)-8 production, (2) P2Y11 receptor-mediated affects on IL-12/23 output, and (3) P2X7 receptor mediated IL-1β posttranslational processing. These examples demonstrate important roles of purinergic receptors in the modulation of cytokine production. Extension of these cellular observations to in vivo situations may lead to new therapeutic strategies for treating cytokine-mediated diseases

    Sex Bias and Social Influences on Savanna Chimpanzee (Pan troglodytes verus) Nest Building Behavior

    Get PDF
    Many primates show sex differences in behavior, particularly social behavior, but also tool use for extractive foraging. All great apes learn to build a supportive structure for sleep. Whether sex differences exist in building, as in extractive foraging, is unknown, and little is known about how building skills develop and vary between individuals in the wild. We therefore aimed to describe the nesting behavior of savanna chimpanzees (Pan troglodytes verus) in Fongoli, Senegal, to provide comparative data and to investigate possible sex or age differences in nest building behaviors and nest characteristics. We followed chimpanzee groups to their night nesting sites to record group (55 nights) and individual level data (17 individuals) on nest building initiation and duration (57 nests) during the dry season between October 2007 and March 2008. We returned the following morning to record nest and tree characteristics (71 nests built by 25 individuals). Fongoli chimpanzees nested later than reported for other great apes, but no sex differences in initiating building emerged. Observations were limited but suggest adult females and immature males to nest higher, in larger trees than adult males, and adult females to take longer to build than either adult or immature males. Smaller females and immature males may avoid predation or access thinner, malleable branches, by nesting higher than adult males. These differences suggest that sex differences described for chimpanzee tool use may extend to nest-building, with females investing more time and effort in constructing a safe, warm structure for sleep than males do
    corecore