17 research outputs found

    Increased Expression of Toll-Like Receptors by Monocytes and Natural Killer Cells in ANCA-Associated Vasculitis

    Get PDF
    INTRODUCTION: Toll-like receptors (TLRs) are a family of receptors that sense pathogen associated patterns such as bacterial cell wall proteins. Bacterial infections are associated with anti-neutrophil cytoplasmic antibodies (ANCA)-associated vasculitis (AAV). Here, we assessed the expression of TLRs 2, 4, and 9 by peripheral blood leukocytes from patients with AAV, and investigated TLR mediated responses ex vivo. METHODS: Expression of TLRs was determined in 38 AAV patients (32 remission, 6 active disease), and 20 healthy controls (HC). Membrane expression of TLRs 2, 4, and 9, and intracellular expression of TLR9 by B lymphocytes, T lymphocytes, NK cells, monocytes and granulocytes was assessed using 9-color flowcytometry. Whole blood from 13 patients and 7 HC was stimulated ex vivo with TLR 2, 4 and 9 ligands and production of cytokines was analyzed. RESULTS: In patients, we observed increased proportions of TLR expressing NK cells. Furthermore, patient monocytes expressed higher levels of TLR2 compared to HC, and in a subset of patients an increased proportion of TLR4(+) monocytes was observed. Monocytes from nasal carriers of Staphylococcus aureus expressed increased levels of intracellular TLR9. Membrane expression of TLRs by B lymphocytes, T lymphocytes, and granulocytes was comparable between AAV patients and HC. Patients with active disease did not show differential TLR expression compared to patients in remission. Ex vivo responses to TLR ligands did not differ significantly between patients and HC. CONCLUSIONS: In AAV, monocytes and NK cells display increased TLR expression. Increased TLR expression by these leukocytes, probably resulting from increased activation, could play a role in disease (re)activation

    Antibodies against CD20 or B-Cell Receptor Induce Similar Transcription Patterns in Human Lymphoma Cell Lines

    Get PDF
    BACKGROUND: CD20 is a cell surface protein exclusively expressed on B cells. It is a clinically validated target for Non-Hodgkin's lymphomas (NHL) and autoimmune diseases. The B cell receptor (BCR) plays an important role for development and proliferation of pre-B and B cells. Physical interaction of CD20 with BCR and components of the BCR signaling cascade has been reported but the consequences are not fully understood. METHODOLOGY: In this study we employed antibodies against CD20 and against the BCR to trigger the respective signaling. These antibodies induced very similar expression patterns of up- and down-regulated genes in NHL cell lines indicating that CD20 may play a role in BCR signaling and vice versa. Two of the genes that were rapidly and transiently induced by both stimuli are CCL3 and CCL4. 4 hours after stimulation the concentration of these chemokines in culture medium reaches a maximum. Spleen tyrosine kinase Syk is a cytoplasmic tyrosine kinase and a key component of BCR signaling. Both siRNA mediated silencing of Syk and inhibition by selective small molecule inhibitors impaired CCL3/CCL4 protein induction after treatment with either anti-CD20 or anti-BCR antibodies. CONCLUSION: Our results suggest that treatment with anti-CD20 antibodies triggers at least partially a BCR activation-like response in NHL cell lines

    Associations of baseline use of biologic or targeted synthetic DMARDs with COVID-19 severity in rheumatoid arthritis: Results from the COVID-19 Global Rheumatology Alliance physician registry.

    Get PDF
    OBJECTIVE: To investigate baseline use of biologic or targeted synthetic (b/ts) disease-modifying antirheumatic drugs (DMARDs) and COVID-19 outcomes in rheumatoid arthritis (RA). METHODS: We analysed the COVID-19 Global Rheumatology Alliance physician registry (from 24 March 2020 to 12 April 2021). We investigated b/tsDMARD use for RA at the clinical onset of COVID-19 (baseline): abatacept (ABA), rituximab (RTX), Janus kinase inhibitors (JAKi), interleukin 6 inhibitors (IL-6i) or tumour necrosis factor inhibitors (TNFi, reference group). The ordinal COVID-19 severity outcome was (1) no hospitalisation, (2) hospitalisation without oxygen, (3) hospitalisation with oxygen/ventilation or (4) death. We used ordinal logistic regression to estimate the OR (odds of being one level higher on the ordinal outcome) for each drug class compared with TNFi, adjusting for potential baseline confounders. RESULTS: Of 2869 people with RA (mean age 56.7 years, 80.8% female) on b/tsDMARD at the onset of COVID-19, there were 237 on ABA, 364 on RTX, 317 on IL-6i, 563 on JAKi and 1388 on TNFi. Overall, 613 (21%) were hospitalised and 157 (5.5%) died. RTX (OR 4.15, 95% CI 3.16 to 5.44) and JAKi (OR 2.06, 95% CI 1.60 to 2.65) were each associated with worse COVID-19 severity compared with TNFi. There were no associations between ABA or IL6i and COVID-19 severity. CONCLUSIONS: People with RA treated with RTX or JAKi had worse COVID-19 severity than those on TNFi. The strong association of RTX and JAKi use with poor COVID-19 outcomes highlights prioritisation of risk mitigation strategies for these people

    Development of a Prediction Model for COVID-19 Acute Respiratory Distress Syndrome in Patients With Rheumatic Diseases: Results From the Global Rheumatology Alliance Registry

    Get PDF
    OBJECTIVE: Some patients with rheumatic diseases might be at higher risk for coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS). We aimed to develop a prediction model for COVID-19 ARDS in this population and to create a simple risk score calculator for use in clinical settings. METHODS: Data were derived from the COVID-19 Global Rheumatology Alliance Registry from March 24, 2020, to May 12, 2021. Seven machine learning classifiers were trained on ARDS outcomes using 83 variables obtained at COVID-19 diagnosis. Predictive performance was assessed in a US test set and was validated in patients from four countries with independent registries using area under the curve (AUC), accuracy, sensitivity, and specificity. A simple risk score calculator was developed using a regression model incorporating the most influential predictors from the best performing classifier. RESULTS: The study included 8633 patients from 74 countries, of whom 523 (6%) had ARDS. Gradient boosting had the highest mean AUC (0.78; 95% confidence interval [CI]: 0.67-0.88) and was considered the top performing classifier. Ten predictors were identified as key risk factors and were included in a regression model. The regression model that predicted ARDS with 71% (95% CI: 61%-83%) sensitivity in the test set, and with sensitivities ranging from 61% to 80% in countries with independent registries, was used to develop the risk score calculator. CONCLUSION: We were able to predict ARDS with good sensitivity using information readily available at COVID-19 diagnosis. The proposed risk score calculator has the potential to guide risk stratification for treatments, such as monoclonal antibodies, that have potential to reduce COVID-19 disease progression

    Revisiting the B-cell compartment in mouse and humans: more than one B-cell subset exists in the marginal zone and beyond.

    Get PDF
    International audienceABSTRACT: The immunological roles of B-cells are being revealed as increasingly complex by functions that are largely beyond their commitment to differentiate into plasma cells and produce antibodies, the key molecular protagonists of innate immunity, and also by their compartmentalisation, a more recently acknowledged property of this immune cell category. For decades, B-cells have been recognised by their expression of an immunoglobulin that serves the function of an antigen receptor, which mediates intracellular signalling assisted by companion molecules. As such, B-cells were considered simple in their functioning compared to the other major type of immune cell, the T-lymphocytes, which comprise conventional T-lymphocyte subsets with seminal roles in homeostasis and pathology, and non-conventional T-lymphocyte subsets for which increasing knowledge is accumulating. Since the discovery that the B-cell family included two distinct categories - the non-conventional, or extrafollicular, B1 cells, that have mainly been characterised in the mouse; and the conventional, or lymph node type, B2 cells - plus the detailed description of the main B-cell regulator, FcÎłRIIb, and the function of CD40+ antigen presenting cells as committed/memory B-cells, progress in B-cell physiology has been slower than in other areas of immunology. Cellular and molecular tools have enabled the revival of innate immunity by allowing almost all aspects of cellular immunology to be re-visited. As such, B-cells were found to express "Pathogen Recognition Receptors" such as TLRs, and use them in concert with B-cell signalling during innate and adaptive immunity. An era of B-cell phenotypic and functional analysis thus began that encompassed the study of B-cell microanatomy principally in the lymph nodes, spleen and mucosae. The novel discovery of the differential localisation of B-cells with distinct phenotypes and functions revealed the compartmentalisation of B-cells. This review thus aims to describe novel findings regarding the B-cell compartments found in the mouse as a model organism, and in human physiology and pathology. It must be emphasised that some differences are noticeable between the mouse and human systems, thus increasing the complexity of B-cell compartmentalisation. Special attention will be given to the (lymph node and spleen) marginal zones, which represent major crossroads for B-cell types and functions and a challenge for understanding better the role of B-cell specificities in innate and adaptive immunology

    Immunological aspects in chronic lymphocytic leukemia (CLL) development

    Get PDF
    Chronic lymphocytic leukemia (CLL) is unique among B cell malignancies in that the malignant clones can be featured either somatically mutated or unmutated IGVH genes. CLL cells that express unmutated immunoglobulin variable domains likely underwent final development prior to their entry into the germinal center, whereas those that express mutated variable domains likely transited through the germinal center and then underwent final development. Regardless, the cellular origin of CLL remains unknown. The aim of this review is to summarize immunological aspects involved in this process and to provide insights about the complex biology and pathogenesis of this disease. We propose a mechanistic hypothesis to explain the origin of B-CLL clones into our current picture of normal B cell development. In particular, we suggest that unmutated CLL arises from normal B cells with self-reactivity for apoptotic bodies that have undergone receptor editing, CD5 expression, and anergic processes in the bone marrow. Similarly, mutated CLL would arise from cells that, while acquiring self-reactivity for autoantigens—including apoptotic bodies—in germinal centers, are also still subject to tolerization mechanisms, including receptor editing and anergy. We believe that CLL is a proliferation of B lymphocytes selected during clonal expansion through multiple encounters with (auto)antigens, despite the fact that they differ in their state of activation and maturation. Autoantigens and microbial pathogens activate BCR signaling and promote tolerogenic mechanisms such as receptor editing/revision, anergy, CD5+ expression, and somatic hypermutation in CLL B cells. The result of these tolerogenic mechanisms is the survival of CLL B cell clones with similar surface markers and homogeneous gene expression signatures. We suggest that both immunophenotypic surface markers and homogenous gene expression might represent the evidence of several attempts to re-educate self-reactive B cells

    Association between Tumor Necrosis Factor Inhibitors and the Risk of Hospitalization or Death among Patients with Immune-Mediated Inflammatory Disease and COVID-19

    Get PDF
    Importance: Although tumor necrosis factor (TNF) inhibitors are widely prescribed globally because of their ability to ameliorate shared immune pathways across immune-mediated inflammatory diseases (IMIDs), the impact of COVID-19 among individuals with IMIDs who are receiving TNF inhibitors remains insufficiently understood. Objective: To examine the association between the receipt of TNF inhibitor monotherapy and the risk of COVID-19-associated hospitalization or death compared with other commonly prescribed immunomodulatory treatment regimens among adult patients with IMIDs. Design, Setting, and Participants: This cohort study was a pooled analysis of data from 3 international COVID-19 registries comprising individuals with rheumatic diseases, inflammatory bowel disease, and psoriasis from March 12, 2020, to February 1, 2021. Clinicians directly reported COVID-19 outcomes as well as demographic and clinical characteristics of individuals with IMIDs and confirmed or suspected COVID-19 using online data entry portals. Adults (age ≥18 years) with a diagnosis of inflammatory arthritis, inflammatory bowel disease, or psoriasis were included. Exposures: Treatment exposure categories included TNF inhibitor monotherapy (reference treatment), TNF inhibitors in combination with methotrexate therapy, TNF inhibitors in combination with azathioprine/6-mercaptopurine therapy, methotrexate monotherapy, azathioprine/6-mercaptopurine monotherapy, and Janus kinase (Jak) inhibitor monotherapy. Main Outcomes and Measures: The main outcome was COVID-19-associated hospitalization or death. Registry-level analyses and a pooled analysis of data across the 3 registries were conducted using multilevel multivariable logistic regression models, adjusting for demographic and clinical characteristics and accounting for country, calendar month, and registry-level correlations. Results: A total of 6077 patients from 74 countries were included in the analyses; of those, 3215 individuals (52.9%) were from Europe, 3563 individuals (58.6%) were female, and the mean (SD) age was 48.8 (16.5) years. The most common IMID diagnoses were rheumatoid arthritis (2146 patients [35.3%]) and Crohn disease (1537 patients [25.3%]). A total of 1297 patients (21.3%) were hospitalized, and 189 patients (3.1%) died. In the pooled analysis, compared with patients who received TNF inhibitor monotherapy, higher odds of hospitalization or death were observed among those who received a TNF inhibitor in combination with azathioprine/6-mercaptopurine therapy (odds ratio [OR], 1.74; 95% CI, 1.17-2.58; P =.006), azathioprine/6-mercaptopurine monotherapy (OR, 1.84; 95% CI, 1.30-2.61; P =.001), methotrexate monotherapy (OR, 2.00; 95% CI, 1.57-2.56; P <.001), and Jak inhibitor monotherapy (OR, 1.82; 95% CI, 1.21-2.73; P =.004) but not among those who received a TNF inhibitor in combination with methotrexate therapy (OR, 1.18; 95% CI, 0.85-1.63; P =.33). Similar findings were obtained in analyses that accounted for potential reporting bias and sensitivity analyses that excluded patients with a COVID-19 diagnosis based on symptoms alone. Conclusions and Relevance: In this cohort study, TNF inhibitor monotherapy was associated with a lower risk of adverse COVID-19 outcomes compared with other commonly prescribed immunomodulatory treatment regimens among individuals with IMIDs
    corecore