37 research outputs found

    Epigenotyping in Peripheral Blood Cell DNA and Breast Cancer Risk: A Proof of Principle Study

    Get PDF
    Background: Epigenetic changes are emerging as one of the most important events in carcinogenesis. Two alterations in the pattern of DNA methylation in breast cancer (BC) have been previously reported; active estrogen receptor-a (ER-a) is associated with decreased methylation of ER-a target (ERT) genes, and polycomb group target (PCGT) genes are more likely than other genes to have promoter DNA hypermethylation in cancer. However, whether DNA methylation in normal unrelated cells is associated with BC risk and whether these imprints can be related to factors which can be modified by the environment, is unclear.Methodology/Principal Findings: Using quantitative methylation analysis in a case-control study (n = 1,083) we found that DNA methylation of peripheral blood cell DNA provides good prediction of BC risk. We also report that invasive ductal and invasive lobular BC is characterized by two different sets of genes, the latter particular by genes involved in the differentiation of the mesenchyme (PITX2, TITF1, GDNF and MYOD1). Finally we demonstrate that only ERT genes predict ER positive BC; lack of peripheral blood cell DNA methylation of ZNF217 predicted BC independent of age and family history (odds ratio 1.49; 95% confidence interval 1.12-1.97; P = 0.006) and was associated with ER-a bioactivity in the corresponding serum.Conclusion/Significance: This first large-scale epigenotyping study demonstrates that DNA methylation may serve as a link between the environment and the genome. Factors that can be modulated by the environment (like estrogens) leave an imprint in the DNA of cells that are unrelated to the target organ and indicate the predisposition to develop a cancer. Further research will need to demonstrate whether DNA methylation profiles will be able to serve as a new tool to predict the risk of developing chronic diseases with sufficient accuracy to guide preventive measures

    DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma

    Get PDF
    The significance of chromosome 3p gene alterations in lung cancer is poorly understood. This study set out to investigate promoter methylation in the deleted in lung and oesophageal cancer 1 (DLEC1), MLH1 and other 3p genes in 239 non-small cell lung carcinomas (NSCLC). DLEC1 was methylated in 38.7%, MLH1 in 35.7%, RARβ in 51.7%, RASSF1A in 32.4% and BLU in 35.3% of tumours. Any two of the gene alterations were associated with each other except RARβ. DLEC1 methylation was an independent marker of poor survival in the whole cohort (P=0.025) and in squamous cell carcinoma (P=0.041). MLH1 methylation was also prognostic, particularly in large cell cancer (P=0.006). Concordant methylation of DLEC1/MLH1 was the strongest independent indicator of poor prognosis in the whole cohort (P=0.009). However, microsatellite instability and loss of MLH1 expression was rare, suggesting that MLH1 promoter methylation does not usually lead to gene silencing in lung cancer. This is the first study describing the prognostic value of DLEC1 and MLH1 methylation in NSCLC. The concordant methylation is possibly a consequence of a long-range epigenetic effect in this region of chromosome 3p, which has recently been described in other cancers

    Safety and immunogenicity of heterologous versus homologous prime-boost schedules with an adenoviral vectored and mRNA COVID-19 vaccine (Com-COV): a single-blind, randomised, non-inferiority trial

    Get PDF
    BACKGROUND: Use of heterologous prime-boost COVID-19 vaccine schedules could facilitate mass COVID-19 immunisation. However, we have previously reported that heterologous schedules incorporating an adenoviral vectored vaccine (ChAdOx1 nCoV-19, AstraZeneca; hereafter referred to as ChAd) and an mRNA vaccine (BNT162b2, Pfizer–BioNTech; hereafter referred to as BNT) at a 4-week interval are more reactogenic than homologous schedules. Here, we report the safety and immunogenicity of heterologous schedules with the ChAd and BNT vaccines. METHODS: Com-COV is a participant-blinded, randomised, non-inferiority trial evaluating vaccine safety, reactogenicity, and immunogenicity. Adults aged 50 years and older with no or well controlled comorbidities and no previous SARS-CoV-2 infection by laboratory confirmation were eligible and were recruited at eight sites across the UK. The majority of eligible participants were enrolled into the general cohort (28-day or 84-day prime-boost intervals), who were randomly assigned (1:1:1:1:1:1:1:1) to receive ChAd/ChAd, ChAd/BNT, BNT/BNT, or BNT/ChAd, administered at either 28-day or 84-day prime-boost intervals. A small subset of eligible participants (n=100) were enrolled into an immunology cohort, who had additional blood tests to evaluate immune responses; these participants were randomly assigned (1:1:1:1) to the four schedules (28-day interval only). Participants were masked to the vaccine received but not to the prime-boost interval. The primary endpoint was the geometric mean ratio (GMR) of serum SARS-CoV-2 anti-spike IgG concentration (measured by ELISA) at 28 days after boost, when comparing ChAd/BNT with ChAd/ChAd, and BNT/ChAd with BNT/BNT. The heterologous schedules were considered non-inferior to the approved homologous schedules if the lower limit of the one-sided 97·5% CI of the GMR of these comparisons was greater than 0·63. The primary analysis was done in the per-protocol population, who were seronegative at baseline. Safety analyses were done among participants receiving at least one dose of a study vaccine. The trial is registered with ISRCTN, 69254139. FINDINGS: Between Feb 11 and Feb 26, 2021, 830 participants were enrolled and randomised, including 463 participants with a 28-day prime-boost interval, for whom results are reported here. The mean age of participants was 57·8 years (SD 4·7), with 212 (46%) female participants and 117 (25%) from ethnic minorities. At day 28 post boost, the geometric mean concentration of SARS-CoV-2 anti-spike IgG in ChAd/BNT recipients (12 906 ELU/mL) was non-inferior to that in ChAd/ChAd recipients (1392 ELU/mL), with a GMR of 9·2 (one-sided 97·5% CI 7·5 to ∞). In participants primed with BNT, we did not show non-inferiority of the heterologous schedule (BNT/ChAd, 7133 ELU/mL) against the homologous schedule (BNT/BNT, 14 080 ELU/mL), with a GMR of 0·51 (one-sided 97·5% CI 0·43 to ∞). Four serious adverse events occurred across all groups, none of which were considered to be related to immunisation. INTERPRETATION: Despite the BNT/ChAd regimen not meeting non-inferiority criteria, the SARS-CoV-2 anti-spike IgG concentrations of both heterologous schedules were higher than that of a licensed vaccine schedule (ChAd/ChAd) with proven efficacy against COVID-19 disease and hospitalisation. Along with the higher immunogenicity of ChAd/BNT compared with ChAD/ChAd, these data support flexibility in the use of heterologous prime-boost vaccination using ChAd and BNT COVID-19 vaccines. FUNDING: UK Vaccine Task Force and National Institute for Health Research

    Specific Variants in the MLH1 Gene Region May Drive DNA Methylation, Loss of Protein Expression, and MSI-H Colorectal Cancer

    Get PDF
    Background: We previously identified an association between a mismatch repair gene, MLH1, promoter SNP (rs1800734) and microsatellite unstable (MSI-H) colorectal cancers (CRCs) in two samples. The current study expanded on this finding as we explored the genetic basis of DNA methylation in this region of chromosome 3. We hypothesized that specific polymorphisms in the MLH1 gene region predispose it to DNA methylation, resulting in the loss of MLH1 gene expression, mismatch-repair function, and consequently to genome-wide microsatellite instability. Methodology/Principal Findings: We first tested our hypothesis in one sample from Ontario (901 cases, 1,097 controls) and replicated major findings in two additional samples from Newfoundland and Labrador (479 cases, 336 controls) and from Seattle (591 cases, 629 controls). Logistic regression was used to test for association between SNPs in the region of MLH1 and CRC, MSI-H CRC, MLH1 gene expression in CRC, and DNA methylation in CRC. The association between rs1800734 and MSI-H CRCs, previously reported in Ontario and Newfoundland, was replicated in the Seattle sample. Two additional SNPs, in strong linkage disequilibrium with rs1800734, showed strong associations with MLH1 promoter methylation, loss of MLH1 protein, and MSI-H CRC in all three samples. The logistic regression model of MSI-H CRC that included MLH1-promotermethylation status and MLH1 immunohisotchemistry status fit most parsimoniously in all three samples combined. When rs1800734 was added to this model, its effect was not statistically significant (P-value = 0.72 vs. 2.361024 when the SNP was examined alone). Conclusions/Significance: The observed association of rs1800734 with MSI-H CRC occurs through its effect on the MLH1 promoter methylation, MLH1 IHC deficiency, or both
    corecore