37 research outputs found

    SOD1 and Amyotrophic Lateral Sclerosis: Mutations and Oligomerization

    Get PDF
    There are about 100 single point mutations of copper, zinc superoxide dismutase 1 (SOD1) which are reported (http://alsod.iop.kcl.ac.uk/Als/index.aspx) to be related to the familial form (fALS) of amyotrophic lateral sclerosis (ALS). These mutations are spread all over the protein. It is well documented that fALS produces protein aggregates in the motor neurons of fALS patients, which have been found to be associated to mitochondria. We selected eleven SOD1 mutants, most of them reported as pathological, and characterized them investigating their propensity to aggregation using different techniques, from circular dichroism spectra to ThT-binding fluorescence, size-exclusion chromatography and light scattering spectroscopy. We show here that these eleven SOD1 mutants, only when they are in the metal-free form, undergo the same general mechanism of oligomerization as found for the WT metal-free protein. The rates of oligomerization are different but eventually they give rise to the same type of soluble oligomeric species. These oligomers are formed through oxidation of the two free cysteines of SOD1 (6 and 111) and stabilized by hydrogen bonds, between beta strands, thus forming amyloid-like structures. SOD1 enters the mitochondria as demetallated and mitochondria are loci where oxidative stress may easily occur. The soluble oligomeric species, formed by the apo form of both WT SOD1 and its mutants through an oxidative process, might represent the precursor toxic species, whose existence would also suggest a common mechanism for ALS and fALS. The mechanism here proposed for SOD1 mutant oligomerization is absolutely general and it provides a common unique picture for the behaviors of the many SOD1 mutants, of different nature and distributed all over the protein

    Canine models of copper toxicosis for understanding mammalian copper metabolism

    Get PDF
    Hereditary forms of copper toxicosis exist in man and dogs. In man, Wilson’s disease is the best studied disorder of copper overload, resulting from mutations in the gene coding for the copper transporter ATP7B. Forms of copper toxicosis for which no causal gene is known yet are recognized as well, often in young children. Although advances have been made in unraveling the genetic background of disorders of copper metabolism in man, many questions regarding disease mechanisms and copper homeostasis remain unanswered. Genetic studies in the Bedlington terrier, a dog breed affected with copper toxicosis, identified COMMD1, a gene that was previously unknown to be involved in copper metabolism. Besides the Bedlington terrier, a number of other dog breeds suffer from hereditary copper toxicosis and show similar phenotypes to humans with copper storage disorders. Unlike the heterogeneity of most human populations, the genetic structure within a purebred dog population is homogeneous, which is advantageous for unraveling the molecular genetics of complex diseases. This article reviews the work that has been done on the Bedlington terrier, summarizes what was learned from studies into COMMD1 function, describes hereditary copper toxicosis phenotypes in other dog breeds, and discusses the opportunities for genome-wide association studies on copper toxicosis in the dog to contribute to the understanding of mammalian copper metabolism and copper metabolism disorders in man

    Intersection of phosphate transport, oxidative stress and TOR signalling in Candida albicans virulence

    Get PDF
    Phosphate is an essential macronutrient required for cell growth and division. Pho84 is the major high-affinity cell-surface phosphate importer of Saccharomyces cerevisiae and a crucial element in the phosphate homeostatic system of this model yeast. We found that loss of Candida albicans Pho84 attenuated virulence in Drosophila and murine oropharyngeal and disseminated models of invasive infection, and conferred hypersensitivity to neutrophil killing. Susceptibility of cells lacking Pho84 to neutrophil attack depended on reactive oxygen species (ROS): pho84-/- cells were no more susceptible than wild type C. albicans to neutrophils from a patient with chronic granulomatous disease, or to those whose oxidative burst was pharmacologically inhibited or neutralized. pho84-/- mutants hyperactivated oxidative stress signalling. They accumulated intracellular ROS in the absence of extrinsic oxidative stress, in high as well as low ambient phosphate conditions. ROS accumulation correlated with diminished levels of the unique superoxide dismutase Sod3 in pho84-/- cells, while SOD3 overexpression from a conditional promoter substantially restored these cells’ oxidative stress resistance in vitro. Repression of SOD3 expression sharply increased their oxidative stress hypersensitivity. Neither of these oxidative stress management effects of manipulating SOD3 transcription was observed in PHO84 wild type cells. Sod3 levels were not the only factor driving oxidative stress effects on pho84-/- cells, though, because overexpressing SOD3 did not ameliorate these cells’ hypersensitivity to neutrophil killing ex vivo, indicating Pho84 has further roles in oxidative stress resistance and virulence. Measurement of cellular metal concentrations demonstrated that diminished Sod3 expression was not due to decreased import of its metal cofactor manganese, as predicted from the function of S. cerevisiae Pho84 as a low-affinity manganese transporter. Instead of a role of Pho84 in metal transport, we found its role in TORC1 activation to impact oxidative stress management: overexpression of the TORC1-activating GTPase Gtr1 relieved the Sod3 deficit and ROS excess in pho84-/- null mutant cells, though it did not suppress their hypersensitivity to neutrophil killing or hyphal growth defect. Pharmacologic inhibition of Pho84 by small molecules including the FDA-approved drug foscarnet also induced ROS accumulation. Inhibiting Pho84 could hence support host defenses by sensitizing C. albicans to oxidative stress
    corecore