20 research outputs found

    Comparison of the Full Outline of UnResponsiveness and Glasgow Liege Scale/Glasgow Coma Scale in an Intensive Care Unit Population.

    Full text link
    peer reviewedBACKGROUND: The Full Outline of UnResponsiveness (FOUR) has been proposed as an alternative for the Glasgow Coma Scale (GCS)/Glasgow Liege Scale (GLS) in the evaluation of consciousness in severely brain-damaged patients. We compared the FOUR and GLS/GCS in intensive care unit patients who were admitted in a comatose state. METHODS: FOUR and GLS evaluations were performed in randomized order in 176 acutely (<1 month) brain-damaged patients. GLS scores were transformed in GCS scores by removing the GLS brainstem component. Inter-rater agreement was assessed in 20% of the studied population (N = 35). A logistic regression analysis adjusted for age, and etiology was performed to assess the link between the studied scores and the outcome 3 months after injury (N = 136). RESULTS: GLS/GCS verbal component was scored 1 in 146 patients, among these 131 were intubated. We found that the inter-rater reliability was good for the FOUR score, the GLS/GCS. FOUR, GLS/GCS total scores predicted functional outcome with and without adjustment for age and etiology. 71 patients were considered as being in a vegetative/unresponsive state based on the GLS/GCS. The FOUR score identified 8 of these 71 patients as being minimally conscious given that these patients showed visual pursuit. CONCLUSIONS: The FOUR score is a valid tool with good inter-rater reliability that is comparable to the GLS/GCS in predicting outcome. It offers the advantage to be performable in intubated patients and to identify non-verbal signs of consciousness by assessing visual pursuit, and hence minimal signs of consciousness (11% in this study), not assessed by GLS/GCS scales

    A machine learning approach to predict perceptual decisions: an insight into face pareidolia

    Get PDF
    The perception of an external stimulus not only depends upon the characteristics of the stimulus but is also influenced by the ongoing brain activity prior to its presentation. In this work, we directly tested whether spontaneous electrical brain activities in prestimulus period could predict perceptual outcome in face pareidolia (visualizing face in noise images) on a trial-by-trial basis. Participants were presented with only noise images but with the prior information that some faces would be hidden in these images, while their electrical brain activities were recorded; participants reported their perceptual decision, face or no-face, on each trial. Using differential hemispheric asymmetry features based on large-scale neural oscillations in a machine learning classifier, we demonstrated that prestimulus brain activities could achieve a classification accuracy, discriminating face from no-face perception, of 75% across trials. The time–frequency features representing hemispheric asymmetry yielded the best classification performance, and prestimulus alpha oscillations were found to be mostly involved in predicting perceptual decision. These findings suggest a mechanism of how prior expectations in the prestimulus period may affect post-stimulus decision making

    Conscious perception and the modulatory role of dopamine: no effect of the dopamine D2 agonist cabergoline on visual masking, the attentional blink, and probabilistic discrimination

    Get PDF
    Rationale Conscious perception is thought to depend on global amplification of sensory input. In recent years, striatal dopamine has been proposed to be involved in gating information and conscious access, due to its modulatory influence on thalamocortical connectivity. Objectives Since much of the evidence that implicates striatal dopamine is correlational, we conducted a double-blind crossover pharmacological study in which we administered cabergoline—a dopamine D2 agonist—and placebo to 30 healthy participants. Under both conditions, we subjected participants to several well-established experimental conscious-perception paradigms, such as backward masking and the attentional blink task. Results We found no evidence in support of an effect of cabergoline on conscious perception: key behavioral and event-related potential (ERP) findings associated with each of these tasks were unaffected by cabergoline. Conclusions Our results cast doubt on a causal role for dopamine in visual perception. It remains an open possibility that dopamine has causal effects in other tasks, perhaps where perceptual uncertainty is more prominent

    Dynamic change of global and local information processing in Propofol-induced loss and recovery of consciousness

    Get PDF
    Whether unique to humans or not, consciousness is a central aspect of our experience of the world. The neural fingerprint of this experience, however, remains one of the least understood aspects of the human brain. In this paper we employ graph-theoretic measures and support vector machine classification to assess, in 12 healthy volunteers, the dynamic reconfiguration of functional connectivity during wakefulness, propofol-induced sedation and loss of consciousness, and the recovery of wakefulness. Our main findings, based on resting-state fMRI, are three-fold. First, we find that propofol-induced anesthesia does not bear differently on long-range versus short-range connections. Second, our multi-stage design dissociated an initial phase of thalamo-cortical and cortico-cortical hyperconnectivity, present during sedation, from a phase of cortico-cortical hypoconnectivity, apparent during loss of consciousness. Finally, we show that while clustering is increased during loss of consciousness, as recently suggested, it also remains significantly elevated during wakefulness recovery. Conversely, the characteristic path length of brain networks (i.e., the average functional distance between any two regions of the brain) appears significantly increased only during loss of consciousness, marking a decrease of global information-processing efficiency uniquely associated with unconsciousness. These findings suggest that propofol-induced loss of consciousness is mainly tied to cortico-cortical and not thalamo-cortical mechanisms, and that decreased efficiency of information flow is the main feature differentiating the conscious from the unconscious brain
    corecore