47,303 research outputs found

    Applying the lessons of the attack on the World Trade Center, 11th September 2001, to the design and use of interactive evacuation simulations

    Get PDF
    The collapse of buildings, such as terminal 2E at Paris' Charles de Gaule Airport, and of fires, such as the Rhode Island, Station Night Club tragedy, has focused public attention on the safety of large public buildings. Initiatives in the United States and in Europe have led to the development of interactive simulators that model evacuation from these buildings. The tools avoid some of the ethical and legal problems from simulating evacuations; many people were injured during the 1993 evacuation of the World Trade Center (WTC) complex. They also use many concepts that originate within the CHI communities. For instance, some simulators use simple task models to represent the occupants' goal structures as they search for an available exit. However, the recent release of the report from the National Commission on Terrorist Attacks upon the United States (the '9/11 commission') has posed serious questions about the design and use of this particular class of interactive systems. This paper argues that simulation research needs to draw on insights from the CHI communities in order to meet some the challenges identified by the 9/11 commission

    Lessons from the evacuation of the World Trade Center, Sept 11th 2001 for the future development of computer simulations

    Get PDF
    This paper provides an overview of the state of the art in evacuation simulations. These interactive computer based tools have been developed to help the owners and designers of large public buildings to assess the risks that occupants might face during emergency egress. The development of the Glasgow Evacuation Simulator is used to illustrate the existing generation of tools. This system uses Monte Carlo techniques to control individual and group movements during an evacuation. The end-user can interactively open and block emergency exits at any point. It is also possible to alter the priorities that individuals associate with particular exit routes. A final benefit is that the tool can derive evacuation simulations directly from existing architects models; this reduces the cost of simulations and creates a more prominent role for these tools in the iterative development of large-scale public buildings. Empirical studies have been used to validate the GES system as a tool to support evacuation training. The development of these tools has been informed by numerous human factors studies and by recent accident investigations. For example, the 2003 fire in the Station nightclub in Rhode Island illustrated the way in which most building occupants retrace their steps to an entrance even when there are alternate fire exits. The second half of this paper uses this introduction to criticise the existing state of the art in evacuation simulations. These criticisms are based on a detailed study of the recent findings from the 9/11 Commission (2004). Ten different lessons are identified. Some relate to the need to better understand the role of building management and security systems in controlling egress from public buildings. Others relate to the human factors involved in coordinating distributed groups of emergency personnel who may be physically exhausted by the demands of an evacuation. Arguably the most important findings centre on the need to model the ingress and egress of emergency personnel from these structures. The previous focus of nearly all-existing simulation tools has been on the evacuation of building occupants rather than on the safety of first responders1

    The Hidden Human Factors in Unmanned Aerial Vehicles

    Get PDF
    In April 2006, an Unmanned Aerial Vehicle crashed near Nogales, Arizona. This incident is of interest because it triggered one of the most sustained studies into the causes of failure involving such a vehicle. The National Transportation Safety Board together with the US Customs and Border Protection agency under the Department of Homeland Security worked to identify lessons learned from this mishap. The crash at Nogales is also of interest because it illustrates an irony of Unmanned Aircraft Systems operations; the increasing reliance on autonomous and unmanned operations is increasing the importance of other aspects of human-system interaction in the cause of major incidents. The following pages illustrate this argument using an accident analysis technique, Events and Causal Factors charting, to identify the many different ways in which human factors contributed to the loss of this Predator B aircraft

    Identifying common problems in the acquisition and deployment of large-scale software projects in the US and UK healthcare systems

    Get PDF
    Public and private organizations are investing increasing amounts into the development of healthcare information technology. These applications are perceived to offer numerous benefits. Software systems can improve the exchange of information between healthcare facilities. They support standardised procedures that can help to increase consistency between different service providers. Electronic patient records ensure minimum standards across the trajectory of care when patients move between different specializations. Healthcare information systems also offer economic benefits through efficiency savings; for example by providing the data that helps to identify potential bottlenecks in the provision and administration of care. However, a number of high-profile failures reveal the problems that arise when staff must cope with the loss of these applications. In particular, teams have to retrieve paper based records that often lack the detail on electronic systems. Individuals who have only used electronic information systems face particular problems in learning how to apply paper-based fallbacks. The following pages compare two different failures of Healthcare Information Systems in the UK and North America. The intention is to ensure that future initiatives to extend the integration of electronic patient records will build on the ‘lessons learned’ from previous systems

    JJ-pairing Interactions of Fermions in a Single-jj Shell

    Full text link
    In this talk I shall introduce our recent works on general pairing interactions and pair truncation approximations for fermions in a single-j shell, including the spin zero dominance, features of eigenvalues of fermion systems in a single-j shell interacting by a JJ-pairing interaction.Comment: 10 pages and 4 figures, international symposiu

    On Power Suppressed Operators and Gauge Invariance in SCET

    Full text link
    The form of collinear gauge invariance for power suppressed operators in the soft-collinear effective theory is discussed. Using a field redefinition we show that it is possible to make any power suppressed ultrasoft-collinear operators invariant under the original leading order gauge transformations. Our manipulations avoid gauge fixing. The Lagrangians to O(lambda^2) are given in terms of these new fields. We then give a simple procedure for constructing power suppressed soft-collinear operators in SCET_II by using an intermediate theory SCET_I.Comment: 15 pages, journal versio

    Air Conditioning Hybrid Electric Vehicles while Stopped in Traffic

    Get PDF
    HEVs idle their engine during the stops to meet the cooling and heating needs. But, idling decreases fuel economy and increases engine wear and emissions. The report explores alternative strategies for air conditioning the HEV during the stop times. Simulation analyses are used to identify fundamental differences and new technology tradeoffs encountered in HEVs. An analysis of cooling and heating loads on a car under typical weather and driving conditions is combined with efficiency estimates for an advanced a/c system to compare different cooling strategies in terms of fuel usage and overall system COP. Options considered include belt and electrically driven compressors, with thermal and electrical storage technologies. The results of this parametric analysis narrow the range of cooling and heating strategies to be considered for detailed analysis and prototype testing.Air Conditioning and Refrigeration Project 14

    Optimization of Heat Exchanger Design Parameters for Hydrocarbon Refrigerant Systems

    Get PDF
    Hydrocarbon refrigerants (HC's) are one alternative to hydrofluorocarbons (HFC???s) since they have zero ozone depletion potential and negligible global warming potential. However, due to their flammable nature, the amount of refrigerant used in systems is regulated for safety reasons. This report presents simulation results for a 3-ton R290 (propane) air-conditioning system, and identifies the optimum heat-exchanger geometries that would minimize system charge while trying to retain the same system efficiency. An existing R410A microchannel system simulation served as the base case, and then the geometries were optimized for the R290 system, and the results were compared to the base case. The model was then analyzed for the off-design conditions, and the conclusions presented. The optimal condenser geometry tended to have smaller port diameter and core depth with thicker webs between the ports. Also, the fins tended to be taller, thinner and more densely packed. Similar results were noted for the evaporator geometry. The optimal design reduced the combined heat exchanger charge by more than a factor of 5. The system efficiency was reduced by 3% in the process, but the loss could be recovered because the pressure drop was low enough to permit increasing the air-flow rates. The off-design behavior of the R290 microchannel system is very different from a traditional R410A round-tube plate-fin system. Typically with the increase in ambient temperature, charge from the evaporator and the liquid line moves to the condenser. In the R290 system, because of the oil/refrigerant solubility characteristics, charge from the compressor sump also moves to the condenser. In the microchannel systems, the heat exchangers account for only 20% of the system charge as opposed to 70% in the tube fin systems. At higher ambient temperatures, the additional charge flowing from the other components, provides the condenser with the additional ~7% charge it needs at hot ambient conditions. However, due to the small internal volume of the heat exchangers in microchannel systems, an additional 60% charge flows into the condenser, resulting in high values of subcooling, thus reducing system efficiency. One solution to this problem would be to install a receiver at the outlet from the condenser, to retain high levels of efficiency across a wide range of operating conditions.Air Conditioning and Refrigeration Project 14

    Development, Validation, and Application of a Refrigerator Simulation Model

    Get PDF
    This report describes the further development and validation of the Refrigerator/Freezer Simulation (RFSIM) model. The reports also describes the first major application of the model as an analysis tool for new refrigerator designs; several aspects of multi-speed compressor operation were examined with the model. Several improvements were made to the model that facilitated the validation process and the examination of multi-speed compressors: the model was made more general so that it could operate in numerous configurations in addition to the original design and simulation modes; many improvements were made in the modeling logic and robustness of the capillary tube-suction line heat exchanger model; and the equation-of-statebased property routines that calculated the thermodynamic properties were replaced with interpolation routines that were much faster. The RFSIM model, in design and simulation mode, was validated with data from two refrigerators. In both modes, the average model errors were less than ??5% for several important variables such as evaporator capacity and coefficient of performance. The errors of the simulation mode were reduced from the previous model validation primarily by using a different void fraction correlation in the refrigerant charge equations. The results from the validated RFSIM model indicate that a two-speed compressor could yield energy savings of 4% to 14% due to the increased steady-state efficiency at the low speed and an additional 0.5 to 4% savings due to the decreased cycling frequency. The results also showed that the capillary tube-suction line heat exchanger, when designed for the low speed, did not adversely affect the pull-down capacity when the compressor operated at the high speed. Lastly, it was found that a refrigerator operating at low ambient temperatures could actually benefit from a decrease in the condenser fan speed. This change in fan speed increased the evaporator capacity by reallocating charge to the evaporator and subsequently reducing the superheat at the evaporator exit.Air Conditioning and Refrigeration Project 6
    corecore