87 research outputs found

    Structure and evolution of the human IKBA gene

    Get PDF
    IκBα belongs to a gene family whose members are characterized by their 6-7 Ankyrin repeats, which allow them to interact with members of the Rel family of transcription factors. We have sequenced a human IκBα genomic clone to determine its gene structure. The human IκBα gene (IKBA) has six exons and five introns that span approximately 3.5 kb. This genomic organization is similar to that of other members of the Ankyrin gene family. The humanIKBAgene shares similar intron/exon boundaries with the humanBCL3andNFKB2genes, which is consistent with their conserved Ankyrin repeats. To examine further the evolutionary relationship between human IκBα and other members of its gene family, we performed a phylogenetic analysis. Although the resulting phylogenetic tree does not identify a common ancestor of the IκBα gene family, it indicates that this family diverges into two groups based on structure and function

    First Report of Alternaria Black Spot Disease Caused by Alternaria alternata on the Invasive Weed Solanum rostratum in Xinjiang, China

    Get PDF
    Solanum rostratum is a noxious weed, native to Mexico and the USA, which has invaded Liaoning, Jilin, Hebei, Inner Mongolia, Shanxi, Xinjiang and Beijing, China (Eminniya et al., 2013). In August 2015, foliar symptoms of yellowish to black spots were observed on plants of S. rostratum nearby an agricultural plantation in Changji, Xinjiang. The following year, about 17% of the 206 plants surveyed on about 0.2 ha of deserted farmland were infected from July-September (at 19-35°C under 29-97% RH)

    Product Differentiation Costs and Global Competition

    Get PDF
    The growing competitive intensity on the markets determines the emergence of competition costs that are expressed at a corporate level and have implicit repercussions for the supply system. This type of costs makes it possible to identify a close link between competition costs and supply differentiation costs. Classification by competitive intensity presupposes that the analysis performed identifies the classification of company costs as the discriminating element, in terms of the competitive pressure of the context in which the firm operates. The emergence of competition costs is linked to an attempt to squeeze them as an aspect of vertical, or more specifically, horizontal cooperation strategies.Product Differentiation; Differentiation Costs; Over-Supply; Global Competition; Marketing; Market-Driven Management; Global Corporations; Global Markets DOI:http://dx.doi.org/10.4468/2005.1.06garbelli

    Scaffold Translation: Barriers Between Concept and Clinic

    Full text link
    Translation of scaffold-based bone tissue engineering (BTE) therapies to clinical use remains, bluntly, a failure. This dearth of translated tissue engineering therapies (including scaffolds) remains despite 25 years of research, research funding totaling hundreds of millions of dollars, over 12,000 papers on BTE and over 2000 papers on BTE scaffolds alone in the past 10 years (PubMed search). Enabling scaffold translation requires first an understanding of the challenges, and second, addressing the complete range of these challenges. There are the obvious technical challenges of designing, manufacturing, and functionalizing scaffolds to fill the Form, Fixation, Function, and Formation needs of bone defect repair. However, these technical solutions should be targeted to specific clinical indications (e.g., mandibular defects, spine fusion, long bone defects, etc.). Further, technical solutions should also address business challenges, including the need to obtain regulatory approval, meet specific market needs, and obtain private investment to develop products, again for specific clinical indications. Finally, these business and technical challenges present a much different model than the typical research paradigm, presenting the field with philosophical challenges in terms of publishing and funding priorities that should be addressed as well. In this article, we review in detail the technical, business, and philosophical barriers of translating scaffolds from Concept to Clinic. We argue that envisioning and engineering scaffolds as modular systems with a sliding scale of complexity offers the best path to addressing these translational challenges.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90495/1/ten-2Eteb-2E2011-2E0251.pd

    Hierarchy of Temporal Responses of Multivariate Self-Excited Epidemic Processes

    Full text link
    We present the first exact analysis of some of the temporal properties of multivariate self-excited Hawkes conditional Poisson processes, which constitute powerful representations of a large variety of systems with bursty events, for which past activity triggers future activity. The term "multivariate" refers to the property that events come in different types, with possibly different intra- and inter-triggering abilities. We develop the general formalism of the multivariate generating moment function for the cumulative number of first-generation and of all generation events triggered by a given mother event (the "shock") as a function of the current time tt. This corresponds to studying the response function of the process. A variety of different systems have been analyzed. In particular, for systems in which triggering between events of different types proceeds through a one-dimension directed or symmetric chain of influence in type space, we report a novel hierarchy of intermediate asymptotic power law decays ∼1/t1−(m+1)θ\sim 1/t^{1-(m+1)\theta} of the rate of triggered events as a function of the distance mm of the events to the initial shock in the type space, where 0<θ<10 < \theta <1 for the relevant long-memory processes characterizing many natural and social systems. The richness of the generated time dynamics comes from the cascades of intermediate events of possibly different kinds, unfolding via a kind of inter-breeding genealogy.Comment: 40 pages, 8 figure

    Hydrophobic and ionic-interactions in bulk and confined water with implications for collapse and folding of proteins

    Full text link
    Water and water-mediated interactions determine thermodynamic and kinetics of protein folding, protein aggregation and self-assembly in confined spaces. To obtain insights into the role of water in the context of folding problems, we describe computer simulations of a few related model systems. The dynamics of collapse of eicosane shows that upon expulsion of water the linear hydrocarbon chain adopts an ordered helical hairpin structure with 1.5 turns. The structure of dimer of eicosane molecules has two well ordered helical hairpins that are stacked perpendicular to each other. As a prelude to studying folding in confined spaces we used simulations to understand changes in hydrophobic and ionic interactions in nano droplets. Solvation of hydrophobic and charged species change drastically in nano water droplets. Hydrophobic species are localized at the boundary. The tendency of ions to be at the boundary where water density is low increases as the charge density decreases. Interaction between hydrophobic, polar, and charged residue are also profoundly altered in confined spaces. Using the results of computer simulations and accounting for loss of chain entropy upon confinement we argue and then demonstrate, using simulations in explicit water, that ordered states of generic amphiphilic peptide sequences should be stabilized in cylindrical nanopores
    • …
    corecore