874 research outputs found

    Lepton flavor violation decays τμP1P2\tau^-\to \mu^- P_1 P_2 in the topcolor-assisted technicolor model and the littlest Higgs model with TT parity

    Full text link
    The new particles predicted by the topcolor-assisted technicolor (TC2TC2) model and the littlest Higgs model with T-parity (called LHTLHT model) can induce the lepton flavor violation (LFVLFV) couplings at tree level or one loop level, which might generate large contributions to some LFVLFV processes. Taking into account the constraints of the experimental data on the relevant free parameters, we calculate the branching ratios of the LFVLFV decay processes τμP1P2\tau^-\to\mu^- P_1 P_2 with P1P2P_1 P_2 = π+π\pi^+\pi^-, K+KK^+K^- and K0K0ˉK^0\bar{K^0} in the context of these two kinds of new physics models. We find that the TC2TC2 model and the LHTLHT model can indeed produce significant contributions to some of these LFVLFV decay processes.Comment: 24 pages, 7 figure

    Multi-agent based hierarchical hybrid control for smart microgrid

    Get PDF
    This paper studies the smart control issue for an autonomous microgrid in order to maintain the secure voltages as well as maximize economic and environmental benefits. A control scheme called as multi-agent based hierarchical hybrid control is proposed

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0μ+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+μ+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+μ+X)BF(D0μ+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25

    A study of charged kappa in J/ψK±Ksππ0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0

    Full text link
    Based on 58×10658 \times 10^6 J/ψJ/\psi events collected by BESII, the decay J/ψK±Ksππ0J/\psi \to K^{\pm} K_s \pi^{\mp} \pi^0 is studied. In the invariant mass spectrum recoiling against the charged K(892)±K^*(892)^{\pm}, the charged κ\kappa particle is found as a low mass enhancement. If a Breit-Wigner function of constant width is used to parameterize the kappa, its pole locates at (849±7714+18)i(256±4022+46)(849 \pm 77 ^{+18}_{-14}) -i (256 \pm 40 ^{+46}_{-22}) MeV/c2c^2. Also in this channel, the decay J/ψK(892)+K(892)J/\psi \to K^*(892)^+ K^*(892)^- is observed for the first time. Its branching ratio is (1.00±0.190.32+0.11)×103(1.00 \pm 0.19 ^{+0.11}_{-0.32}) \times 10^{-3}.Comment: 14 pages, 4 figure

    Magnetic polarons in weakly doped high-Tc superconductors

    Full text link
    We consider a spin Hamiltonian describing dd-dd exchange interactions between localized spins dd of a finite antiferromagnet as well as pp-dd interactions between a conducting hole (pp) and localized spins. The spin Hamiltonian is solved numerically with use of Lanczos method of diagonalization. We conclude that pp-dd exchange interaction leads to localization of magnetic polarons. Quantum fluctuations of the antiferromagnet strengthen this effect and make the formation of polarons localized in one site possible even for weak pp-dd coupling. Total energy calculations, including the kinetic energy, do not change essentially the phase diagram of magnetic polarons formation. For parameters reasonable for high-TcT_c superconductors either a polaron localized on one lattice cell or a small ferron can form. For reasonable values of the dielectric function and pp-dd coupling, the contributions of magnetic and phonon terms in the formation of a polaron in weakly doped high-TcT_c materials are comparable.Comment: revised, revtex-4, 12 pages 8 eps figure

    Measurements of the observed cross sections for exclusive light hadron production in e^+e^- annihilation at \sqrt{s}= 3.773 and 3.650 GeV

    Full text link
    By analyzing the data sets of 17.3 pb1^{-1} taken at s=3.773\sqrt{s}=3.773 GeV and 6.5 pb1^{-1} taken at s=3.650\sqrt{s}=3.650 GeV with the BESII detector at the BEPC collider, we have measured the observed cross sections for 12 exclusive light hadron final states produced in e+ee^+e^- annihilation at the two energy points. We have also set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay to these final states at 90% C.L.Comment: 8 pages, 5 figur

    Laser frequency stabilization using folded cavity and mirror reflectivity tuning

    No full text
    International audienceA new method of laser frequency stabilization using polarization property of an optical cavity is proposed. In a standard Fabry–Perot cavity, the coating layers thickness of cavity mirrors is calculated to obtain the same phase shift for sand p-wave but a slight detuning from the nominal thickness can produce sand p-wave phase detuning. As a result, each wave accumulates a different round-trip phase shift and resonates at a different frequency. Using this polarization property, an error signal is generated by a simple setup consisting of a quarter wave-plate rotated at 45°, a polarizing beam splitter and two photodiodes. This method exhibits similar error signal as the Pound–Drever–Hall technique but without need for any frequency modulation. Lock theory and experimental results are presented in this paper.

    Measurements of the observed cross sections for e+ee^+e^-\to exclusive light hadrons containing π0π0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pb1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+eπ+ππ0π0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+Kπ0π0K^+K^-\pi^0\pi^0, 2(π+ππ0)2(\pi^+\pi^-\pi^0), K+Kπ+ππ0π0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(π+π)π0π03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure

    Measurements of Cabibbo Suppressed Hadronic Decay Fractions of Charmed D0 and D+ Mesons

    Full text link
    Using data collected with the BESII detector at e+ee^{+}e^{-} storage ring Beijing Electron Positron Collider, the measurements of relative branching fractions for seven Cabibbo suppressed hadronic weak decays D0KK+D^0 \to K^- K^+, π+π\pi^+ \pi^-, KK+π+πK^- K^+ \pi^+ \pi^- and π+π+ππ\pi^+ \pi^+ \pi^- \pi^-, D+K0ˉK+D^+ \to \bar{K^0} K^+, KK+π+K^- K^+ \pi^+ and ππ+π+\pi^- \pi^+ \pi^+ are presented.Comment: 11 pages, 5 figure

    Performance evaluation of digital pulse position modulation for wavelength division multiplexing FSO systems impaired by interchannel crosstalk

    Get PDF
    Wavelength division multiplexing (WDM) has been proposed for fibre, intersatellite, free space and indoor optical communication systems. Digital pulse position modulation (DPPM) is a more power efficient modulation format than on-off keying (OOK) and a strong contender for the modulation of free-space systems. Although DPPM obtains this advantage in exchange for a bandwidth expansion, WDM systems using it are still potentially attractive, particularly for moderate coding levels. However, WDM systems are susceptible to interchannel crosstalk and modelling this in a WDM DPPM system is necessary. Models of varying complexity, based on simplifying assumptions, are presented and evaluated for the case of a single crosstalk wavelength. For a single crosstalk, results can be straightforwardly obtained by artificially imposing the computationally convenient constraint that frames (and thus slots also) align. Multiple crosstalk effects are additionally investigated, for the most practically relevant cases of modest coding level, and using both simulation and analytical methods. In general, DPPM maintains its sensitivity advantage over OOK even in the presence of crosstalk while predicting lower power penalty at low coding level in WDM systems
    corecore