298 research outputs found

    Probing neutral top-pion via a flavor-changing process γγ→tcˉΠt0\gamma\gamma\to t\bar{c}\Pi_{t}^{0}

    Full text link
    In the framework of topcolor-assisted-technicolor model(TC2), we study a flavor-changing neutral top-pion production process γγ→tcˉΠt0\gamma\gamma\to t\bar{c}\Pi_{t}^{0}. The study shows that there exists a resonance effect which can enhance the cross section up to a few fb even tens fb. For a yearly luminosity 100 fb−1fb^{-1} at future linear colliders, there might be hundreds even thousands events to be produced. On the other hand, the background of such flavor-changing process is very clean due to the GIM mechanism in SM . With such sufficient events and clean background, neutral toppion could be detected at future linear colliders with high center of energy and luminosity. Our study provides a possible way to test TC2 model.Comment: 10 pages, 4 figures,has been accepted by Phys.Rev.

    The productions of the top-pions and top-Higgs associated with the charm quark at the hadron colliders

    Get PDF
    In the topcolor-assistant technicolor (TC2) model, the typical physical particles, top-pions and top-Higgs, are predicted and the existence of these particles could be regarded as the robust evidence of the model. These particles are accessible at the Tevatron and LHC, and furthermore the flavor-changing(FC) feature of the TC2 model can provide us a unique chance to probe them. In this paper, we study some interesting FC production processes of top-pions and top-Higgs at the Tevatron and LHC, i.e., cΠt−c\Pi_{t}^{-} and cΠt0(ht0)c\Pi_{t}^{0}(h_{t}^{0}) productions. We find that the light charged top-pions are not favorable by the Tevatron experiments and the Tevatron has a little capability to probe neutral top-pion and top-Higgs via these FC production processes. At the LHC, however, the cross section can reach the level of 10∼10010\sim 100 pb for cΠt−c\Pi_t^- production and 10∼100 10\sim 100 fb for cΠt0(ht0)c\Pi_t^0(h_t^0) production. So one can expect that enough signals could be produced at the LHC experiments. Furthermore, the SM background should be clean due to the FC feature of the processes and the FC decay modes Πt−→bcˉ,Πt0(ht0)→tcˉ\Pi_t^-\to b\bar{c}, \Pi_t^0(h_t^0)\to t\bar{c} can provide us the typical signal to detect the top-pions and top-Higgs. Therefore, it is hopeful to find the signal of top-pions and top-Higgs with the running of the LHC via these FC processes.Comment: 12 pages, 6 figure

    Lepton flavor violation decays τ−→μ−P1P2\tau^-\to \mu^- P_1 P_2 in the topcolor-assisted technicolor model and the littlest Higgs model with TT parity

    Full text link
    The new particles predicted by the topcolor-assisted technicolor (TC2TC2) model and the littlest Higgs model with T-parity (called LHTLHT model) can induce the lepton flavor violation (LFVLFV) couplings at tree level or one loop level, which might generate large contributions to some LFVLFV processes. Taking into account the constraints of the experimental data on the relevant free parameters, we calculate the branching ratios of the LFVLFV decay processes τ−→μ−P1P2\tau^-\to\mu^- P_1 P_2 with P1P2P_1 P_2 = π+π−\pi^+\pi^-, K+K−K^+K^- and K0K0ˉK^0\bar{K^0} in the context of these two kinds of new physics models. We find that the TC2TC2 model and the LHTLHT model can indeed produce significant contributions to some of these LFVLFV decay processes.Comment: 24 pages, 7 figure

    The rare top quark decays t→cVt\to cV in the topcolor-assisted technicolor model

    Full text link
    We consider the rare top quark decays in the framework of topcolor-assisted technicolor (TC2) model. We find that the contributions of top-pions and top-Higgs predicted by the TC2 model can enhance the SM branching ratios by as much as 6-9 orders of magnitude. i.e., in the most case, the orders of magnitude of branching ratios are Br(t→cg)∼10−5Br(t\to c g)\sim 10^{-5}, Br(t→cZ)∼10−5Br(t\to c Z)\sim 10^{-5}, Br(t→cγ)∼10−7Br(t\to c \gamma)\sim 10^{-7}. With the reasonable values of the parameters in TC2 model, such rare top quark decays may be testable in the future experiments. So, rare top quark decays provide us a unique way to test TC2 model.Comment: 14 pages, 4 figure

    Search for Top Quark FCNC Couplings in Z' Models at the LHC and CLIC

    Full text link
    The top quark is the heaviest particle to date discovered, with a mass close to the electroweak symmetry breaking scale. It is expected that the top quark would be sensitive to the new physics at the TeV scale. One of the most important aspects of the top quark physics can be the investigation of the possible anomalous couplings. Here, we study the top quark flavor changing neutral current (FCNC) couplings via the extra gauge boson Z' at the Large Hadron Collider (LHC) and the Compact Linear Collider (CLIC) energies. We calculate the total cross sections for the signal and the corresponding Standard Model (SM) background processes. For an FCNC mixing parameter x=0.2 and the sequential Z' mass of 1 TeV, we find the single top quark FCNC production cross sections 0.38(1.76) fb at the LHC with sqrt{s_{pp}}=7(14) TeV, respectively. For the resonance production of sequential Z' boson and decays to single top quark at the Compact Linear Collider (CLIC) energies, including the initial state radiation and beamstrahlung effects, we find the cross section 27.96(0.91) fb at sqrt{s_{e^{+}e^{-}}}=1(3) TeV, respectively. We make the analysis to investigate the parameter space (mixing-mass) through various Z' models. It is shown that the results benefit from the flavor tagging.Comment: 20 pages, 17 figures, 6 table

    Probing Topcolor-Assisted Technicolor from Top-Charm Associated Production at LHC

    Get PDF
    We propose to probe the topcolor-assisted technicolor (TC2) model from the top-charm associated productions at the LHC, which are highly suppressed in the Standard Model. Due to the flavor-changing couplings of the top quark with the scalars (top-pions and top-Higgs) in TC2 model, the top-charm associated productions can occur via both the s-channel and t-channel parton processes by exchanging a scalar field at the LHC. We examined these processes through Monte Carlo simulation and found that they can reach the observable level at the LHC in quite a large part of the parameter space of the TC2 model.Comment: Version to appear in PRD (Rapid Communication

    Density pertubation of unparticle dark matter in the flat Universe

    Full text link
    The unparticle has been suggested as a candidate of dark matter. We investigated the growth rate of the density perturbation for the unparticle dark matter in the flat Universe. First, we consider the model in which unparticle is the sole dark matter and find that the growth factor can be approximated well by f=(1+3ωu)Ωuγf=(1+3\omega_u)\Omega^{\gamma}_u, where ωu\omega_u is the equation of state of unparticle. Our results show that the presence of ωu\omega_u modifies the behavior of the growth factor ff. For the second model where unparticle co-exists with cold dark matter, the growth factor has a new approximation f=(1+3ωu)Ωuγ+αΩmf=(1+3\omega_u)\Omega^{\gamma}_u+\alpha \Omega_m and α\alpha is a function of ωu\omega_u. Thus the growth factor of unparticle is quite different from that of usual dark matter. These information can help us know more about unparticle and the early evolution of the Universe.Comment: 6pages, 4 figures, accepted for publication in Eur. Phys. J.

    Partial wave analysis of J/\psi \to \gamma \phi \phi

    Get PDF
    Using 5.8×107J/ψ5.8 \times 10^7 J/\psi events collected in the BESII detector, the radiative decay J/ψ→γϕϕ→γK+K−KS0KL0J/\psi \to \gamma \phi \phi \to \gamma K^+ K^- K^0_S K^0_L is studied. The ϕϕ\phi\phi invariant mass distribution exhibits a near-threshold enhancement that peaks around 2.24 GeV/c2c^{2}. A partial wave analysis shows that the structure is dominated by a 0−+0^{-+} state (η(2225)\eta(2225)) with a mass of 2.24−0.02+0.03−0.02+0.032.24^{+0.03}_{-0.02}{}^{+0.03}_{-0.02} GeV/c2c^{2} and a width of 0.19±0.03−0.04+0.060.19 \pm 0.03^{+0.06}_{-0.04} GeV/c2c^{2}. The product branching fraction is: Br(J/ψ→γη(2225))⋅Br(η(2225)→ϕϕ)=(4.4±0.4±0.8)×10−4Br(J/\psi \to \gamma \eta(2225))\cdot Br(\eta(2225)\to \phi\phi) = (4.4 \pm 0.4 \pm 0.8)\times 10^{-4}.Comment: 11 pages, 4 figures. corrected proof for journa

    Measurements of the observed cross sections for e+e−→e^+e^-\to exclusive light hadrons containing π0π0\pi^0\pi^0 at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV

    Full text link
    By analyzing the data sets of 17.3, 6.5 and 1.0 pb−1^{-1} taken, respectively, at s=3.773\sqrt s= 3.773, 3.650 and 3.6648 GeV with the BES-II detector at the BEPC collider, we measure the observed cross sections for e+e−→π+π−π0π0e^+e^-\to \pi^+\pi^-\pi^0\pi^0, K+K−π0π0K^+K^-\pi^0\pi^0, 2(π+π−π0)2(\pi^+\pi^-\pi^0), K+K−π+π−π0π0K^+K^-\pi^+\pi^-\pi^0\pi^0 and 3(π+π−)π0π03(\pi^+\pi^-)\pi^0\pi^0 at the three energy points. Based on these cross sections we set the upper limits on the observed cross sections and the branching fractions for ψ(3770)\psi(3770) decay into these final states at 90% C.L..Comment: 7 pages, 2 figure

    Direct Measurements of Absolute Branching Fractions for D0 and D+ Inclusive Semimuonic Decays

    Full text link
    By analyzing about 33 pb−1\rm pb^{-1} data sample collected at and around 3.773 GeV with the BES-II detector at the BEPC collider, we directly measure the branching fractions for the neutral and charged DD inclusive semimuonic decays to be BF(D0→μ+X)=(6.8±1.5±0.7)BF(D^0 \to \mu^+ X) =(6.8\pm 1.5\pm 0.7)% and BF(D+→μ+X)=(17.6±2.7±1.8)BF(D^+ \to \mu^+ X) =(17.6 \pm 2.7 \pm 1.8)%, and determine the ratio of the two branching fractions to be BF(D+→μ+X)BF(D0→μ+X)=2.59±0.70±0.25\frac{BF(D^+ \to \mu^+ X)}{BF(D^0 \to \mu^+ X)}=2.59\pm 0.70 \pm 0.25
    • …
    corecore