70 research outputs found

    Co-culture of mechanically injured cartilage with joint capsule tissue alters chondrocyte expression patterns and increases ADAMTS5 production

    Get PDF
    We studied changes in chondrocyte gene expression, aggrecan degradation, and aggrecanase production and activity in normal and mechanically injured cartilage co-cultured with joint capsule tissue. Chondrocyte expression of 21 genes was measured at 1, 2, 4, 6, 12, and 24 h after treatment; clustering analysis enabled identification of co-expression profiles. Aggrecan fragments retained in cartilage and released to medium and loss of cartilage sGAG were quantified. Increased expression of MMP-13 and ADAMTS4 clustered with effects of co-culture, while increased expression of ADAMTS5, MMP-3, TGF-β, c-fos, c-jun clustered with cartilage injury. ADAMTS5 protein within cartilage (immunohistochemistry) increased following injury and with co-culture. Cartilage sGAG decreased over 16-days, most severely following injury plus co-culture. Cartilage aggrecan was cleaved at aggrecanase sites in the interglobular and C-terminal domains, resulting in loss of the G3 domain, especially after injury plus co-culture. Together, these results support the hypothesis that interactions between injured cartilage and other joint tissues are important in matrix catabolism after joint injury

    Lubricin and its potential as an OA therapy

    Get PDF

    MOLECULAR BIOMARKERS OF OSTEOARTHRITIS: CURRENT CANDIDATES AND FUTURE PROSPECTS

    Get PDF

    Lubricin and its potential as an OA therapy

    No full text

    P371 LUBRICIN BIOSYNTHESIS BY CHONDROCYTES AND SYNOVIOCYTES IS DIFFERENTIALLYREGULATED BY CYTOKINES/GROWTH FACTORS

    Get PDF

    Expression of hyaluronan synthases in articular cartilage

    Get PDF
    AbstractObjective To investigate the mRNA expression profiles of three mammalian hyaluronan synthases (HAS1, HAS2 and HAS3) in chondrocytes from normal (undiseased) animal cartilage and osteoarthritic human cartilage maintained in experimental culture systems and exposed to catabolic or anabolic stimuli provided by cytokines, growth factors and retinoic acid.Design Chondrocytes isolated from normal bovine, porcine or from osteoarthritic human cartilage were cultured as monolayers or embedded in agarose. Cultures were maintained for 3–5 days in the presence or absence of catabolic stimuli (IL-1, TNF-α or retinoic acid) or anabolic stimuli (TGF-β or IGF-1) followed by extraction of RNA and analysis of HAS mRNA expression by RT-PCR.Results Whereas mRNA for HAS1 was not detected in any sample, the mRNAs for HAS2 and HAS3 were expressed in human, bovine and porcine chondrocytes. HAS2 mRNA was present in chondrocytes from all cartilages and under all culture conditions, whereas HAS3 did not show such constitutive expression. In agarose cultures of bovine and porcine chondrocytes HAS2 mRNA was present in control, IL-1 and retinoic acid treated cultures, whereas HAS3 mRNA was only detected in IL-1 stimulated cultures. Mature bovine chondrocytes cultured in monolayers expressed mRNAs for both HAS2 and HAS3 in the presence of IL-1, TNF-α, TGF-β and IGF-1, however immature bovine chondrocytes in monolayer cultures displayed virtually no HAS3 mRNA expression in the presence of these cytokines and growth factors. HAS2 and HAS3 mRNAs were also expressed by bovine chondrocytes isolated from either the superficial or deep zone of articular cartilage, and by human chondrocytes cultured either in the absence or presence of IL-1 and retinoic acid.Conclusions Our data indicate that HAS2 and HAS3 (but not HAS1) mRNAs are expressed in several mammalian cartilages. Chondrocyte HAS2 mRNA appears to be constitutively expressed while chondrocyte HAS3 mRNA expression can be differentially regulated in an age-dependent fashion, and may be affected by local and/or systemic catabolic or anabolic stimuli provided by cytokines or growth factors
    corecore