737 research outputs found
Representation of tropical deep convection in atmospheric models - Part 1 : Meteorology and comparison with satellite observations
Published under Creative Commons Licence 3.0. Original article can be found at : http://www.atmospheric-chemistry-and-physics.net/ "The author's copyright for this publication is transferred to University of Hertfordshire".Fast convective transport in the tropics can efficiently redistribute water vapour and pollutants up to the upper troposphere. In this study we compare tropical convection characteristics for the year 2005 in a range of atmospheric models, including numerical weather prediction (NWP) models, chemistry transport models (CTMs), and chemistry-climate models (CCMs). The model runs have been performed within the framework of the SCOUT-O3 (Stratospheric-Climate Links with Emphasis on the Upper Troposphere and Lower Stratosphere) project. The characteristics of tropical convection, such as seasonal cycle, land/sea contrast and vertical extent, are analysed using satellite observations as a benchmark for model simulations. The observational datasets used in this work comprise precipitation rates, outgoing longwave radiation, cloud-top pressure, and water vapour from a number of independent sources, including ERA-Interim analyses. Most models are generally able to reproduce the seasonal cycle and strength of precipitation for continental regions but show larger discrepancies with observations for the Maritime Continent region. The frequency distribution of high clouds from models and observations is calculated using highly temporally-resolved (up to 3-hourly) cloud top data. The percentage of clouds above 15 km varies significantly between the models. Vertical profiles of water vapour in the upper troposphere-lower stratosphere (UTLS) show large differences between the models which can only be partly attributed to temperature differences. If a convective plume reaches above the level of zero net radiative heating, which is estimated to be ~15 km in the tropics, the air detrained from it can be transported upwards by radiative heating into the lower stratosphere. In this context, we discuss the role of tropical convection as a precursor for the transport of short-lived species into the lower stratosphere.Peer reviewe
Precise specification matching for adaptive reuse in embedded systems
AbstractSpecification matching is a key to reuse of components in embedded systems. Existing specification matching techniques for embedded systems are designed to match reactive behaviors using adaptive techniques to dynamically alter behaviors. However, correct specification matching demands both behavioral matching (that checks component adaptability) and functional matching (that ensures that proper functionality is reused). While approaches for behavioral matching exist, combined functional and behavioral matching during component reuse in embedded systems is lacking. This paper presents a precise specification matching, including both behavioral and functional matching. We introduce attributed labeled transition systems (ALTS) to formally specify component behavior and functionalities. Given ALTS of a new specification (a function F) and an existing component (a device D), a new refinement relation from F to D, called an S-matching relation, is proposed for precise specification matching. The existence of an S-matching relation is also shown to be a necessary and sufficient condition for the existence of a correct adapter to adapt D to match F both behaviorally and functionally. Automated component adaptation is facilitated by a matching tool implemented in a tabled logic programming environment, which provides distinct advantages for rapid implementation. Practical examples are given to illustrate how the concrete adapter is derived automatically from specification matching
Spatial distribution of photoelectrons participating in formation of x-ray absorption spectra
Interpretation of x-ray absorption near-edge structure (XANES) experiments is
often done via analyzing the role of particular atoms in the formation of
specific peaks in the calculated spectrum. Typically, this is achieved by
calculating the spectrum for a series of trial structures where various atoms
are moved and/or removed. A more quantitative approach is presented here, based
on comparing the probabilities that a XANES photoelectron of a given energy can
be found near particular atoms. Such a photoelectron probability density can be
consistently defined as a sum over squares of wave functions which describe
participating photoelectron diffraction processes, weighted by their normalized
cross sections. A fine structure in the energy dependence of these
probabilities can be extracted and compared to XANES spectrum. As an
illustration of this novel technique, we analyze the photoelectron probability
density at the Ti K pre-edge of TiS2 and at the Ti K-edge of rutile TiO2.Comment: Journal abstract available on-line at
http://link.aps.org/abstract/PRB/v65/e20511
Top Quark Decays into Heavy Quark Mesons
For top quark decays into heavy quark mesons and , a
complete calculation to the leading order both in QCD coupling constant
and in , the typical velocity of the heavy quarks inside the
mesons, is performed. Relatons between the top quark mass and the decay
branching ratios are studied. Comparion with the results which are obtained by
using the quark frangmentation functions is also discussed. The branching
ratios are consistent (within a factor of ) with that obtained using
fragmentation functions at GeV.Comment: 15 pages in LaTex form, 4 figures include
Suppressing CMB Quadrupole with a Bounce from Contracting Phase to Inflation
Recent released WMAP data show a low value of quadrupole in the CMB
temperature fluctuations, which confirms the early observations by COBE. In
this paper, a scenario, in which a contracting phase is followed by an
inflationary phase, is constructed. We calculate the perturbation spectrum and
show that this scenario can provide a reasonable explanation for lower CMB
anisotropies on large angular scales.Comment: 5 pages, 3 figure
What Can WMAP Tell Us About The Very Early Universe? New Physics as an Explanation of Suppressed Large Scale Power and Running Spectral Index
The Wilkinson Microwave Anisotropy Probe microwave background data may be
giving us clues about new physics at the transition from a ``stringy'' epoch of
the universe to the standard Friedmann Robertson Walker description. Deviations
on large angular scales of the data, as compared to theoretical expectations,
as well as running of the spectral index of density perturbations, can be
explained by new physics whose scale is set by the height of an inflationary
potential. As examples of possible signatures for this new physics, we study
the cosmic microwave background spectrum for two string inspired models: 1)
modifications to the Friedmann equations and 2) velocity dependent potentials.
The suppression of low ``l'' modes in the microwave background data arises due
to the new physics. In addition, the spectral index is red (n<1) on small
scales and blue (n>1) on large scales, in agreement with data.Comment: 18 pages, 2 figures, submitted for publication in Physical Review D,
references added in this versio
Distributed phase-covariant cloning with atomic ensembles via quantum Zeno dynamics
We propose an interesting scheme for distributed orbital state quantum
cloning with atomic ensembles based on the quantum Zeno dynamics. These atomic
ensembles which consist of identical three-level atoms are trapped in distant
cavities connected by a single-mode integrated optical star coupler. These
qubits can be manipulated through appropriate modulation of the coupling
constants between atomic ensemble and classical field, and the cavity decay can
be largely suppressed as the number of atoms in the ensemble qubits increases.
The fidelity of each cloned qubit can be obtained with analytic result. The
present scheme provides a new way to construct the quantum communication
network.Comment: 5 pages, 4 figure
The Supersymmetric Standard Models with Decay and Stable Dark Matters
We propose two supersymmetric Standard Models (SMs) with decaying and stable
dark matter (DM) particles. To explain the SM fermion masses and mixings and
have a heavy decay DM particle S, we consider the Froggatt-Nielsen mechanism by
introducing an anomalous U(1)_X gauge symmetry. Around the string scale, the
U(1)_X gauge symmetry is broken down to a Z_2 symmetry under which S is odd
while all the SM particles are even. S obtains a vacuum expectation value
around the TeV scale, and then it can three-body decay dominantly to the
second/third family of the SM leptons in Model I and to the first family of the
SM leptons in Model II. Choosing a benchmark point in the constrained minimal
supersymmetric SM with exact R parity, we show that the lightest neutralino DM
is consistent with the CDMS II experiment. Considering S three-body decay and
choosing suitable parameters, we show that the PAMELA and Fermi-LAT experiments
and the PAMELA and ATIC experiments can be explained in Model I and Model II,
respectively.Comment: RevTex4, 26 pages, 6 figures, references added, version to appear in
EPJ
- âŚ