96 research outputs found
The non-linear Schr\"odinger equation and the conformal properties of non-relativistic space-time
The cubic non-linear Schr\"odinger equation where the coefficient of the
nonlinear term is a function only passes the Painlev\'e test of Weiss,
Tabor, and Carnevale only for , where and are constants.
This is explained by transforming the time-dependent system into the
constant-coefficient NLS by means of a time-dependent non-linear
transformation, related to the conformal properties of non-relativistic
space-time. A similar argument explains the integrability of the NLS in a
uniform force field or in an oscillator background.Comment: Thoroughly revised version, in the light of new interest in
non-relativistic conformal tranformation, with a new reference list. 8 pages,
LaTex, no figures. To be published in Int. J. Theor. Phy
Prioritising research areas for antibiotic stewardship programmes in hospitals: a behavioural perspective consensus paper
SCOPE: Antibiotic stewardship programmes (ASPs) are necessary in hospitals to improve the judicious use of antibiotics. While ASPs require complex change of key behaviours on individual, team, organisation and policy levels, evidence from the behavioural sciences is underutilised in antibiotic stewardship studies across the world, including high-income countries (HICs). A consensus procedure was performed to propose research priority areas for optimising effective implementation of ASPs in hospital settings, using a behavioural perspective.
METHODS: A workgroup for behavioural approaches to ASPs was convened in response to the fourth call for leading expert network proposals by the Joint Programming Initiative on Antimicrobial Resistance (JPIAMR). Eighteen clinical and academic specialists in antibiotic stewardship, implementation science and behaviour change from four high-income countries with publicly-funded health care systems (that is Canada, Germany, Norway and the UK), met face-to-face to agree on broad research priority areas using a structured consensus method.
QUESTION ADDRESSED AND RECOMMENDATIONS: The consensus process on the 10 identified research priority areas resulted in recommendations that need urgent scientific interest and funding to optimise effective implementation of antibiotic stewardship programmes for hospital inpatients in HICs with publicly-funded health care systems. We suggest and detail, behavioural science evidence-guided research efforts in the following areas: 1) Comprehensively identifying barriers and facilitators to implementing antibiotic stewardship programmes and clinical recommendations intended to optimise antibiotic prescribing; 2) Identifying actors ('who') and actions ('what needs to be done') of antibiotic stewardship programmes and clinical teams; 3) Synthesising available evidence to support future research and planning for antibiotic stewardship programmes; 4) Specifying the activities in current antibiotic stewardship programmes with the purpose of defining a 'control group' for comparison with new initiatives; 5) Defining a balanced set of outcomes and measures to evaluate the effects of interventions focused on reducing unnecessary exposure to antibiotics; 6) Conducting robust evaluations of antibiotic stewardship programmes with built-in process evaluations and fidelity assessments; 7) Defining and designing antibiotic stewardship programmes; 8) Establishing the evidence base for impact of antibiotic stewardship programmes on resistance; 9) Investigating the role and impact of government and policy contexts on antibiotic stewardship programmes; and 10) Understanding what matters to patients in antibiotic stewardship programmes in hospitals.
Assessment, revisions and updates of our priority-setting exercise should be considered, at intervals of 2 years. To propose research priority areas in low- and medium income countries (LIMCs), the methodology reported here could be applied
Whole-genome sequencing reveals host factors underlying critical COVID-19
Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
Investigation of Primary Recovery in Low-Permeability Oil Formations: A Look at the Cardium Formation, Alberta (Canada)
Tight oil formations (permeability < 1 mD) in Western Canada have recently emerged as a reliable resource of light oil supply owing to the use of multifractured horizontal wells. The Cardium formation, which contains 25% of Alberta’s total discovered light oil (according to Alberta Energy Resources Conservation Board), consists of conventional and unconventional (low-permeability or tight) play areas. The conventional play areas have been developed since 1957. Contrarily, the development of unconventional play is a recent event, due to considerably poorer reservoir properties which increases the risk associated with capital investment. This in turn implies the need for a comprehensive and critical study of the area before planning any development strategy.
This paper presents performance results from the low permeability portions of the Cardium formation where new horizontal wells have been drilled and stimulated in multiple stages to promote transverse hydraulic fractures. Development of the tight Cardium formation using primary recovery is considered. The production data of these wells was first matched using a black oil simulator. The calibrated model presented was used for performance perditions based on sensitivity studies and investigations that encompassed design factors such as well spacing, fracture properties and operational constraints
Amplification of a radially polarised beam in an Yb:YAG thin-slab
The use of an Yb:YAG thin-slab architecture for amplification of a radially-polarised beam at 1030 nm is investigated and shown to be a promising route for power scaling. The detrimental impact of the Gouy phase shift on radial polarisation purity is considered and a simple scheme for effective phase shift management to restore polarisation purity is presented. Preliminary experiments based on a double-pass amplifier configuration yielded an output beam with a high radial polarisation extinction ratio of 15dB and no degradation in polarisation purity despite the non- axial symmetry of amplifier gain medium. At 50W of launched pump power a small-signal gain of 7.5dB was obtained for a 25mW input, whilst 4.4dB gain was obtained for a 1.45W input. The prospects for further power scaling are discussed
Thermally-guided fiber-rod laser
Fiber and bulk lasers form two distinct classes of solid-state laser, both of which have achieved tremendous success in various arenas, but they are not without their limitations. The long, thin geometry of a fiber allows excellent heat dissipation, which combined with a waveguiding structure provides stronger resilience to thermally-induced mode distortions than in bulk lasers, allowing diffraction-limited single-mode operation at multi-kW power levels in continuous-wave mode. However, the threshold for deleterious non-linear effects and laser-induced damage in fibers is generally much lower than bulk systems, owing to very tight beam confinement over a long interaction length, placing stringent limitations on pulsed performance in fibers
Novel method for generating high purity vortex modes
A scheme for generating Laguerre-Gaussian vortex modes using a novel astigmatic mode converter based on spherical mirrors is described. A simple method for characterizing mode purity is employed to confirm the benefits of this scheme.</p
- …