1,143 research outputs found
Exploiting synergistic catalysis for an ambient temperature photocycloaddition to pyrazoles
Sydnone based cycloaddition reactions are a versatile platform for pyrazole synthesis, however they operate under harsh conditions (high temperature and long reaction times). Herein we report a strategy that addresses this limitation utilizing the synergistic combination of organocatalysis and visible light photocatalysis. This new approach proceeds under ambient conditions and with excellent levels of regiocontrol. Mechanistic studies suggest that photoactivation of sydnones, rather than enamines, is key to the successful implementation of this process
Photon-assisted capacitance–voltage study of organic metal–insulator–semiconductor capacitors
AbstractThe results are reported of a detailed investigation into the photoinduced changes that occur in the capacitance–voltage (C–V) response of an organic metal–insulator–semiconductor (MIS) capacitor based on the organic semiconductor poly(3-hexylthiophene), P3HT. During the forward voltage sweep, the device is driven into deep depletion but stabilizes at a voltage-independent minimum capacitance, Cmin, whose value depends on photon energy, light intensity and voltage ramp rate. On reversing the voltage sweep, strong hysteresis is observed owing to a positive shift in the flatband voltage, VFB, of the device. A theoretical quasi-static model is developed in which it is assumed that electrons photogenerated in the semiconductor depletion region escape geminate recombination following the Onsager model. These electrons then drift to the P3HT/insulator interface where they become deeply trapped thus effecting a positive shift in VFB. By choosing appropriate values for the only disposable parameter in the model, an excellent fit is obtained to the experimental Cmin, from which we extract values for the zero-field quantum yield of photoelectrons in P3HT that are of similar magnitude, 10−5 to 10−3, to those previously deduced for π-conjugated polymers from photoconduction measurements. From the observed hysteresis we deduce that the interfacial electron trap density probably exceeds 1016m−2. Evidence is presented suggesting that the ratio of free to trapped electrons at the interface depends on the insulator used for fabricating the device
Organic Ring Oscillators with Sub-200 ns Stage Delay Based on a Solution-Processed p-type Semiconductor Blend
High-frequency ring oscillators with sub-microsecond stage delay fabricated from spin-coated films of a specially formulated small-molecule/host-polymer blend are reported. Contacts and interconnects are patterned by photolithography with plasma etching used for creating vias and removing excess material to reduce parasitic effects. The characteristics of transistors with 4.6 μm channel length scale linearly with channel width over the range 60�2160 μm. Model device parameters extracted using Silvaco's Universal Organic Thin Film Transistor (UOTFT) Model yield values of hole mobility increasing from 1.9 to 2.6 cm2 Vs�1 as gate voltage increased. Simulated and fabricated Vgs = 0 inverters predict that the technology is capable of fabricating 5-stage ring oscillators operating above 100 kHz. Initial designs operated mainly at frequencies in the range 250�300 kHz, due to smaller parasitic gate overlap capacitances and higher supply voltages than assumed in the simulations. A design incorporating graded inverter sizes operates at frequencies above 400 kHz with the best reaching 529 kHz. The corresponding stage delay of 189 ns is the shortest reported to date for a solution-processed p-type semiconductor and compares favorably with similar circuits based on evaporated small molecules. Significant further improvements are identified which could lead to the fabrication of digital circuits that operate at much higher bit rates than previously reported
Erratum to: What can ecosystems learn? Expanding evolutionary ecology with learning theory.
BACKGROUND: The structure and organisation of ecological interactions within an ecosystem is modified by the evolution and coevolution of the individual species it contains. Understanding how historical conditions have shaped this architecture is vital for understanding system responses to change at scales from the microbial upwards. However, in the absence of a group selection process, the collective behaviours and ecosystem functions exhibited by the whole community cannot be organised or adapted in a Darwinian sense. A long-standing open question thus persists: Are there alternative organising principles that enable us to understand and predict how the coevolution of the component species creates and maintains complex collective behaviours exhibited by the ecosystem as a whole?
RESULTS: Here we answer this question by incorporating principles from connectionist learning, a previously unrelated discipline already using well-developed theories on how emergent behaviours arise in simple networks. Specifically, we show conditions where natural selection on ecological interactions is functionally equivalent to a simple type of connectionist learning, 'unsupervised learning', well-known in neural-network models of cognitive systems to produce many non-trivial collective behaviours. Accordingly, we find that a community can self-organise in a well-defined and non-trivial sense without selection at the community level; its organisation can be conditioned by past experience in the same sense as connectionist learning models habituate to stimuli. This conditioning drives the community to form a distributed ecological memory of multiple past states, causing the community to: a) converge to these states from any random initial composition; b) accurately restore historical compositions from small fragments; c) recover a state composition following disturbance; and d) to correctly classify ambiguous initial compositions according to their similarity to learned compositions. We examine how the formation of alternative stable states alters the community's response to changing environmental forcing, and we identify conditions under which the ecosystem exhibits hysteresis with potential for catastrophic regime shifts.
CONCLUSIONS: This work highlights the potential of connectionist theory to expand our understanding of evo-eco dynamics and collective ecological behaviours. Within this framework we find that, despite not being a Darwinian unit, ecological communities can behave like connectionist learning systems, creating internal conditions that habituate to past environmental conditions and actively recalling those conditions.
REVIEWERS: This article was reviewed by Prof. Ricard V Solé, Universitat Pompeu Fabra, Barcelona and Prof. Rob Knight, University of Colorado, Boulder
What can ecosystems learn? Expanding evolutionary ecology with learning theory.
BACKGROUND: The structure and organisation of ecological interactions within an ecosystem is modified by the evolution and coevolution of the individual species it contains. Understanding how historical conditions have shaped this architecture is vital for understanding system responses to change at scales from the microbial upwards. However, in the absence of a group selection process, the collective behaviours and ecosystem functions exhibited by the whole community cannot be organised or adapted in a Darwinian sense. A long-standing open question thus persists: Are there alternative organising principles that enable us to understand and predict how the coevolution of the component species creates and maintains complex collective behaviours exhibited by the ecosystem as a whole?
RESULTS: Here we answer this question by incorporating principles from connectionist learning, a previously unrelated discipline already using well-developed theories on how emergent behaviours arise in simple networks. Specifically, we show conditions where natural selection on ecological interactions is functionally equivalent to a simple type of connectionist learning, 'unsupervised learning', well-known in neural-network models of cognitive systems to produce many non-trivial collective behaviours. Accordingly, we find that a community can self-organise in a well-defined and non-trivial sense without selection at the community level; its organisation can be conditioned by past experience in the same sense as connectionist learning models habituate to stimuli. This conditioning drives the community to form a distributed ecological memory of multiple past states, causing the community to: a) converge to these states from any random initial composition; b) accurately restore historical compositions from small fragments; c) recover a state composition following disturbance; and d) to correctly classify ambiguous initial compositions according to their similarity to learned compositions. We examine how the formation of alternative stable states alters the community's response to changing environmental forcing, and we identify conditions under which the ecosystem exhibits hysteresis with potential for catastrophic regime shifts.
CONCLUSIONS: This work highlights the potential of connectionist theory to expand our understanding of evo-eco dynamics and collective ecological behaviours. Within this framework we find that, despite not being a Darwinian unit, ecological communities can behave like connectionist learning systems, creating internal conditions that habituate to past environmental conditions and actively recalling those conditions.
REVIEWERS: This article was reviewed by Prof. Ricard V Solé, Universitat Pompeu Fabra, Barcelona and Prof. Rob Knight, University of Colorado, Boulder
Prominent bulk pinning effect in the MgB_2 superconductor
We report the magnetic-field dependence of the irreversible magnetization of
the recently discovered binary superconductor MgB. For the temperature
region of , the contribution of the bulk pinning to the
magnetization overwhelms that of the surface pinning. This was evident from the
fact that the magnetization curves, , were well described by the
critical-state model without considering the surface pinning effect. It was
also found that the curves at various temperatures scaled when the field
and the magnetization were normalized by the characteristic scaling factors
and , respectively. This feature suggests that the
pinning mechanism determining the hysteresis in is unique below .Comment: 4pages and 4 figures. Phys. Rev. B (accepted
Brane Gas Cosmology, M-theory and Little String Theory
We generalize the Brane Gas Cosmological Scenario to M-theory degrees of
freedom, namely and branes. Without brane intersections, the
Brandenberger Vafa(BV) arguments applied to M-theory degrees of freedom
generically predict a large 6 dimensional spacetime. We show that intersections
of and branes can instead lead to a large 4 dimensional spacetime.
One dimensional intersections in 11D is related to (2,0) little strings (LST)
on NS5 branes in type IIA. The gas regime of membranes in M-theory corresponds
to the thermodynamics of LST obtained from holography. We propose a mechanism
whereby LST living on the worldvolume of NS5 (M5)-branes wrapping a five
dimensional torus, annihilate most efficiently in 3+1 dimensions leading to a
large 3+1 dimensional spacetime. We also show that this picture is consistent
with the gas approximation in M-theory.Comment: 8 page
A Pd-catalyzed [4 + 2] annulation approach to fluorinated N-heterocycles
3-Fluoro- and trifluoromethylthio-piperidines represent important building blocks for discovery chemistry. We report a simple and efficient method to access analogs of these compounds that are armed with rich functionality allowing them to be chemoselectively derivatized with high diastereocontrol
Path integral duality and Planck scale corrections to the primordial spectrum in exponential inflation
The enormous red-shifting of the modes during the inflationary epoch suggests
that physics at the Planck scale may modify the standard, nearly,
scale-invariant, primordial, density perturbation spectrum. Under the principle
of path-integral duality, the space-time behaves as though it has a minimal
length (which we shall assume to be of the order of the Planck
length), a feature that is expected to arise when the quantum gravitational
effects on the matter fields have been taken into account. Using the method of
path integral duality, in this work, we evaluate the Planck scale corrections
to the spectrum of density perturbations in the case of exponential inflation.
We find that the amplitude of the corrections is of the order of , where and denote the inflationary
and the Planck energy scales, respectively. We also find that the corrections
turn out to be completely independent of scale. We briefly discuss the
implications of our result, and also comment on how it compares with an earlier
result.Comment: 12 pages, 1 figure, RevTex4 forma
- …