23 research outputs found

    Three-dimensional character of the deformation twin in magnesium

    Get PDF
    Deformation twins are three-dimensional domains, traditionally viewed as ellipsoids because of their two-dimensional lenticular sections. In this work, we performed statistical analysis of twin shapes viewing along three orthogonal directions: the ‘dark side’ (DS) view along the twin shear direction (η1), the twinning plane normal (TPN) view (k1) and the ‘bright side’ (BS) view along the direction λ(=k1 × η1). Our electron back-scatter diffraction results show that twins in the DS and BS views normally exhibit a lenticular shape, whereas they show an irregular shape in the TPN view. Moreover, the findings in the TPN view revealed that twins grow faster along λ the lateral direction than along η1 the forward propagation direction at the initial stages of twin growth. These twin sections are irregular, indicating that growth is locally controlled and the overall shape is not perfectly ellipsoidal. We explain these findings using atomistic models, and ascribe them to differences in the mobility of the edge and screw components of the twinning dislocations

    Characterizing the boundary lateral to the shear direction of deformation twins in magnesium

    Get PDF
    The three-dimensional nature of twins, especially the atomic structures and motion mechanisms of the boundary lateral to the shear direction of the twin, has never been characterized at the atomic level, because such boundary is, in principle, crystallographically unobservable.We thus refer to it here as the dark side of the twin. Here, using high-resolution transmission electron microscopy and atomistic simulations, we characterize the dark side of {1012} deformation twins in magnesium. It is found that the dark side is serrated and comprised of {1012} coherent twin boundaries and semi-coherent twist prismatic–prismatic {2110} boundaries that control twin growth. The conclusions of this work apply to the same twin mode in other hexagonal close-packed materials, and the conceptual ideas discussed here should hold for all twin modes in crystalline materials

    Characterizing the boundary lateral to the shear direction of deformation twins in magnesium

    Get PDF
    The three-dimensional nature of twins, especially the atomic structures and motion mechanisms of the boundary lateral to the shear direction of the twin, has never been characterized at the atomic level, because such boundary is, in principle, crystallographically unobservable.We thus refer to it here as the dark side of the twin. Here, using high-resolution transmission electron microscopy and atomistic simulations, we characterize the dark side of {1012} deformation twins in magnesium. It is found that the dark side is serrated and comprised of {1012} coherent twin boundaries and semi-coherent twist prismatic–prismatic {2110} boundaries that control twin growth. The conclusions of this work apply to the same twin mode in other hexagonal close-packed materials, and the conceptual ideas discussed here should hold for all twin modes in crystalline materials

    Three-dimensional character of the deformation twin in magnesium

    Get PDF
    Deformation twins are three-dimensional domains, traditionally viewed as ellipsoids because of their two-dimensional lenticular sections. In this work, we performed statistical analysis of twin shapes viewing along three orthogonal directions: the ‘dark side’ (DS) view along the twin shear direction (η1), the twinning plane normal (TPN) view (k1) and the ‘bright side’ (BS) view along the direction λ(=k1 × η1). Our electron back-scatter diffraction results show that twins in the DS and BS views normally exhibit a lenticular shape, whereas they show an irregular shape in the TPN view. Moreover, the findings in the TPN view revealed that twins grow faster along λ the lateral direction than along η1 the forward propagation direction at the initial stages of twin growth. These twin sections are irregular, indicating that growth is locally controlled and the overall shape is not perfectly ellipsoidal. We explain these findings using atomistic models, and ascribe them to differences in the mobility of the edge and screw components of the twinning dislocations

    Characterizing the boundary lateral to the shear direction of deformation twins in magnesium

    Get PDF
    The three-dimensional nature of twins, especially the atomic structures and motion mechanisms of the boundary lateral to the shear direction of the twin, has never been characterized at the atomic level, because such boundary is, in principle, crystallographically unobservable.We thus refer to it here as the dark side of the twin. Here, using high-resolution transmission electron microscopy and atomistic simulations, we characterize the dark side of {1012} deformation twins in magnesium. It is found that the dark side is serrated and comprised of {1012} coherent twin boundaries and semi-coherent twist prismatic–prismatic {2110} boundaries that control twin growth. The conclusions of this work apply to the same twin mode in other hexagonal close-packed materials, and the conceptual ideas discussed here should hold for all twin modes in crystalline materials

    A crystallographic dislocation model for describing hardening of polycrystals during strain path changes. Application to low carbon steels

    No full text
    International audiencePolycrystal aggregates subjected to plastic forming exhibit large changes in the yield stress and extended transients in the flow stress following strain path changes. Since these effects are related to the rearrangement of the dislocation structure induced during previous loading, here we propose a crystallographically-based dislocation hardening model for capturing such behavior. The model is implemented in the polycrystal code VPSC and is applied to simulate strain path changes in low carbon steel. The path changes consist of tension followed by shear at different angles with respect to the preload direction, and forward simple shear followed by reverse shear. The results are compared to experimental data and highlight the role that directional dislocation structures induced during preload play during the reload stage

    Experiments and Modeling of Low Carbon Steel Sheet Subjected to Double Strain Path Changes

    No full text
    International audienceLow carbon steel was deformed under double strain path changes consisting in three successive tension tests carried out in different directions with respect to the material symmetry axes. The influences of the strain amounts and severity of strain path change in the reloading yield stress and subsequent strain hardening were investigated in detail. The trends captured using the homogeneous anisotropic hardening approach, which is based on a homogeneous yield function, are in good agreement with the experimental results

    Enhancements of homogenous anisotropic hardening model and application to mild and dual-phase steels.

    No full text
    International audienceThe formulation of the so-called homogeneous anisotropic hardening (HAH) model, which was originally proposed in Barlat et al. (2011), is refined. With the new features, this distortional plasticity-based constitutive model predicts the mechanical response of metals subjected to non-proportional loading with improved accuracy, in particular for cross-loading. In that case, applications to two different steels are provided for illustration purposes. For mild steel, the stress overshoot of the monotonic flow curve observed during a double load change is well reproduced by the model. In addition, for a dual-phase steel deformed in a two-step tension test with axes at 450 from each other, the new features allow the reloading yield stress to be lower than the unloading flow stress, in good agreement with experimental observations. (C) 2013 Elsevier Ltd. All rights reserved
    corecore