42 research outputs found

    Star polymers: From conformations to interactions to phase diagrams

    No full text
    We review recent progress achieved in the theoretical description of the interactions, correlations, and phase behavior of concentrated solutions of star polymers, sterically stabilized colloids, and micelles. We show that the theoretical prediction of an ultrasoft, logarithmically diverging effective interaction between the star centers, which has been confirmed by SANSexperiments and computer simulations, lies in the core of a host of unusual phenomena encountered in such systems. These include anomalous structure factors, reentrant melting behavior, as well as a variety of exotic crystal phases. Extensions to polydisperse stars and the role of many-body forces are also discussed. A particular ‘mean-field’ character of star polymer fluids is presented and it is shown that it manifests itself in the shape and structure of sedimentation profiles of these systems.Здійснено огляд недавніх досягнень у теоретичному описі взаємодій, кореляцій і фазової поведінки концентрованих розчинів зіркових полімерів, просторово стійких колоїдів і міцел. Ми покажемо, що теоретично передбачена надм’яка логарифмічно розбіжна ефективна взаємодія між центрами зірок, що була підтверджена SANS-експериментами і комп’ютерними симуляціями, потрапляє в множину незвичних явищ, які спостерігаються в таких системах. Сюди відносяться аномальні структурні фактори, поведінка зворотнього плавлення, множини екзотичних кристалічних фаз. Також обговорено узагальнення на випадок полідисперсних зірок і роль сил багатьох тіл. Представлено особливу поведінку типу “cереднього поля” плинів зіркових полімерів і показано, що вона проявляється у формі і структурі профілів осаджування цих систем

    Structure, phase behavior, and inhomogeneous fluid properties of binary dendrimer mixtures

    Get PDF
    The effective pair potentials between different kinds of dendrimers in solution can be well approximated by appropriate Gaussian functions. We find that in binary dendrimer mixtures the range and strength of the effective interactions depend strongly upon the specific dendrimer architecture. We consider two different types of dendrimer mixtures, employing the Gaussian effective pair potentials, to determine the bulk fluid structure and phase behavior. Using a simple mean field density functional theory (DFT) we find good agreement between theory and simulation results for the bulk fluid structure. Depending on the mixture, we find bulk fluid-fluid phase separation (macrophase separation) or microphase separation, i.e., a transition to a state characterized by undamped periodic concentration fluctuations. We also determine the inhomogeneous fluid structure for confinement in spherical cavities. Again, we find good agreement between the DFT and simulation results. For the dendrimer mixture exhibiting microphase separation, we observe a rather striking pattern formation under confinement. © 2006 American Institute of Physics

    Generation of defects and disorder from deeply quenching a liquid to form a solid

    Full text link
    We show how deeply quenching a liquid to temperatures where it is linearly unstable and the crystal is the equilibrium phase often produces crystalline structures with defects and disorder. As the solid phase advances into the liquid phase, the modulations in the density distribution created behind the advancing solidification front do not necessarily have a wavelength that is the same as the equilibrium crystal lattice spacing. This is because in a deep enough quench the front propagation is governed by linear processes, but the crystal lattice spacing is determined by nonlinear terms. The wavelength mismatch can result in significant disorder behind the front that may or may not persist in the latter stage dynamics. We support these observations by presenting results from dynamical density functional theory calculations for simple one- and two-component two-dimensional systems of soft core particles.Comment: 25 pages, 11 figure

    Ground state at high density

    Full text link
    Weak limits as the density tends to infinity of classical ground states of integrable pair potentials are shown to minimize the mean-field energy functional. By studying the latter we derive global properties of high-density ground state configurations in bounded domains and in infinite space. Our main result is a theorem stating that for interactions having a strictly positive Fourier transform the distribution of particles tends to be uniform as the density increases, while high-density ground states show some pattern if the Fourier transform is partially negative. The latter confirms the conclusion of earlier studies by Vlasov (1945), Kirzhnits and Nepomnyashchii (1971), and Likos et al. (2007). Other results include the proof that there is no Bravais lattice among high-density ground states of interactions whose Fourier transform has a negative part and the potential diverges or has a cusp at zero. We also show that in the ground state configurations of the penetrable sphere model particles are superposed on the sites of a close-packed lattice.Comment: Note adde

    Counterion Penetration and Effective Electrostatic Interactions in Solutions of Polyelectrolyte Stars and Microgels

    Full text link
    Counterion distributions and effective electrostatic interactions between spherical macroions in polyelectrolyte solutions are calculated via second-order perturbation (linear response) theory. By modelling the macroions as continuous charge distributions that are permeable to counterions, analytical expressions are obtained for counterion profiles and effective pair interactions in solutions of star-branched and microgel macroions. The counterions are found to penetrate stars more easily than microgels, with important implications for screening of bare macroion interactions. The effective pair interactions are Yukawa in form for separated macroions, but are softly repulsive and bounded for overlapping macroions. A one-body volume energy, which depends on the average macroion concentration, emerges naturally in the theory and contributes to the total free energy.Comment: 15 pages, 5 figure

    Dynamic density functional study of a driven colloidal particle in polymer solutions

    Full text link
    The Dynamic Density Functional (DDF) theory and standard Brownian dynamics simulations (BDS) are used to study the drifting effects of a colloidal particle in a polymer solution, both for ideal and interacting polymers. The structure of the stationary density distributions and the total induced current are analyzed for different drifting rates. We find good agreement with the BDS, which gives support to the assumptions of the DDF theory. The qualitative aspect of the density distribution are discussed and compared to recent results for driven colloids in one-dimensional channels and to analytical expansions for the ideal solution limit

    Phase separation in star polymer-colloid mixtures

    Get PDF
    We examine the demixing transition in star polymer-colloid mixtures for star arm numbers f=2,6,16,32 and different star-colloid size ratios. Theoretically, we solve the thermodynamically self-consistent Rogers-Young integral equations for binary mixtures using three effective pair potentials obtained from direct molecular computer simulations. The numerical results show a spinodal instability. The demixing binodals are approximately calculated, and found to be consistent with experimental observations.Comment: 4 pages, 4 figures, submitted to PR

    Vapour-liquid coexistence in many-body dissipative particle dynamics

    Full text link
    Many-body dissipative particle dynamics is constructed to exhibit vapour-liquid coexistence, with a sharp interface, and a vapour phase of vanishingly small density. In this form, the model is an unusual example of a soft-sphere liquid with a potential energy built out of local-density dependent one-particle self energies. The application to fluid mechanics problems involving free surfaces is illustrated by simulation of a pendant drop.Comment: 8 pages, 6 figures, revtex

    Structure factor of polymers interacting via a short range repulsive potential: application to hairy wormlike micelles

    Full text link
    We use the Random Phase Approximation (RPA) to compute the structure factor, S(q), of a solution of chains interacting through a soft and short range repulsive potential V. Above a threshold polymer concentration, whose magnitude is essentially controlled by the range of the potential, S(q) exhibits a peak whose position depends on the concentration. We take advantage of the close analogy between polymers and wormlike micelles and apply our model, using a Gaussian function for V, to quantitatively analyze experimental small angle neutron scattering profiles of semi-dilute solutions of hairy wormlike micelles. These samples, which consist in surfactant self-assembled flexible cylinders decorated by amphiphilic copolymer, provide indeed an appropriate experimental model system to study the structure of sterically interacting polymer solutions
    corecore