63 research outputs found

    Investigation into the integration of a resonant tunnelling diode and an optical communications laser: model and experiment

    Get PDF
    A resonant tunnelling diode has been monolithically integrated with an optical communications laser [the resonant tunnelling diode (RTD-LD)] to form a simple optoelectronic integrated circuit (OEIC) that is a novel bistable device suitable for an optical communications system. The RTD-LD was based on a ridge-waveguide laser structure and was fabricated from an InAlGaAs-InP epi-wafer grown by molecular beam epitaxy; it emitted at around 1500 nm. Voltage controlled optical-electrical switching and bistability were observed during the characterisation of the RTD-LD - useful features for a fibre-optic communications laser. Optical and electrical simulations of the RTD-LD were carried out using the circuit simulation tool PSPICE. In addition, a discrete component version of the RTD-LD was constructed which exhibited optical power oscillations, and along with the results of the simulations, gave insight into the operating principles of the monolithically integrated RTD-LD

    Analysis of the gain distribution across the active region of InGaAs-InAlGaAs multiple quantum well lasers

    Get PDF
    Spectral gain measurements for two InGaAs-InAlGaAs multiple width quantum well structures, with inverse-configured active regions, have been presented. One structure consisted of wide quantum wells near the p-side and narrow quantum wells near the n-side of the active region. The other structure consisted of narrow quantum wells near the p-side of the active region with wider quantum wells near the n-side. It is shown that, for the same operating conditions, the structure with wide quantum wells on the p-side of the active region provided a 15% broader gain spectrum in comparison to the structure with narrow quantum wells on the p-side of the active region. The analysis of the results shows non-uniform carrier distribution across the active region of the structures, where the structure with wide quantum wells near the p-side of the active region provided 65% more gain in comparison to the structure with narrow quantum wells near the p-side of the active region. The gain distribution results have been compared with that obtained for the phosphorous quaternary structures in other literature and have shown there is some evidence to suggest that the gain distribution is more uniform in aluminium quaternary than phosphorous quaternary material

    Prospects for atomic magnetometers employing hollow core optical fibre

    Get PDF
    Presently, among the most demanding applications for highly sensitive magnetometers are Magnetocardiography (MCG) and Magnetoencephalography (MEG), where sensitivities of around 1pT.Hz<sup>-1/2</sup> and 1fT.Hz<sup>-1/2</sup> are required. Cryogenic Superconducting Quantum Interference Devices (SQUIDs) are currently used as the magnetometers. However, there has been some recent work on replacing these devices with magnetometers based on atomic spectroscopy and operating at room temperature. There are demonstrations of MCG and MEG signals measured using atomic spectroscopy These atomic magnetometers are based on chip-scale microfabricated components. In this paper we discuss the prospects of using photonic crystal optical fibres or hollow core fibres (HCFs) loaded with Rb vapour in atomic magnetometer systems. We also consider new components for magnetometers based on mode-locked semiconductor lasers for measuring magnetic field via coherent population trapping (CPT) in Rb loaded HCFs

    Output power limitations and improvements in passively mode locked GaAs/AlGaAs quantum well lasers

    Get PDF
    We report a novel approach for increasing the output power in passively mode locked semiconductor lasers. Our approach uses epitaxial structures with an optical trap in the bottom cladding that enlarges the vertical mode size to scale the pulse saturation energy. With this approach we demonstrate a very high peak power of 9.8 W per facet, at a repetition rate of 6.8 GHz and with pulse duration of 0.71 ps. In particular, we compare two GaAs/AlGaAs epilayer designs, a double quantum well design operating at 830 nm and a single quantum well design operating at 795 nm, with vertical mode sizes of 0.5 and 0.75 μm, respectively. We show that a larger mode size not only shifts the mode locking regime of operation toward higher powers, but also produces other improvements with respect to two main failure mechanisms that limit the output power, catastrophic optical mirror damage and catastrophic optical saturable absorber damage. For the 830-nm material structure, we also investigate the effect of nonabsorbing mirrors on output power and mode locked operation of colliding pulse mode locked lasers

    Progress towards photonic crystal quantum cascade laser

    Get PDF
    The work describes recent progress in the design, simulation, implementation and characterisation of photonic crystal (PhC) GaAs-based quantum cascade lasers (QCLs). The benefits of applying active PhC confinement around a QCL cavity are explained, highlighting a route to reduced threshold current operation. Design of a suitable PhC has been performed using published bandgap maps; simulation results of this PhC show a wide, high reflectivity stopband. Implementation of the PhC for the device is particularly difficult, requiring a very durable metallic dry etch mask, high performance dry etching and a low damage epilayer-down device mounting technique. Preliminary shallow etched PhC QCLs demonstrated the viability of current injection through the metal etch mask and the device mounting technique. Development of the etch mask and dry etching have demonstrated a process suitable for the manufacture of deep etched PhC structures. All the necessary elements for implementing deep etched PhC QCLs have now been demonstrated, allowing for the development of high performance devices

    Integration of a resonant tunneling diode and an optical communications laser

    Get PDF
    We report on the first integration of a resonant tunneling diode and an optical communications laser operating at around 1.5 /spl μm. We demonstrate its low-frequency bistable operation and model its electrical characteristics

    Quantum cascade lasers with an integrated polarization mode converter

    Get PDF
    We discuss the design, fabrication and characterization of waveguide polarization mode converters for quantum cascade lasers operating at 4.6 μm. We have fabricated a quantum cascade laser with integrated polarization mode converter that emits light of 69% Transverse Electrical (TE) polarization from one facet and 100% Transverse Magnetic (TM) polarization from the other facet

    Wireless interrogation of an optically modulated resonant tunnelling diode oscillator

    Get PDF
    n this work, a resonant tunnelling diode-photo-detector based microwave oscillator is amplitude modulated using an optical signal. The modulated free running oscillator is coupled to an antenna and phase locked by a wireless carrier that allows remote extraction of the information contained in the modulation. An off-the-shelf demodulator has been used to recover the envelope of the baseband data originally contained in the optical signal. Data were successfully transmitted at a rate of 1 MSym/s with a bit error rate below 10−6

    A liénard oscillator resonant tunnelling diode-laser diode hybrid integrated circuit: model and experiment

    Get PDF
    We report on a hybrid optoelectronic integrated circuit based on a resonant tunnelling diode driving an optical communications laser diode. This circuit can act as a voltage controlled oscillator with optical and electrical outputs. We show that the oscillator operation can be described by Liénard's equation, a second order nonlinear differential equation, which is a generalization of the Van der Pol equation. This treatment gives considerable insight into the potential of a monolithic version of the circuit for optical communication functions including clock recovery and chaotic source applications

    Passively mode-locked semiconductor laser for coherent population trapping in <sup>87</sup>Rb

    Get PDF
    Passively mode-locked semiconductor laser for coherent population trapping in &lt;sup&gt;87&lt;/sup&gt;Rb is reported. The laser material used is a 793nm GaAs/Al&lt;sub&gt;x&lt;/sub&gt;Ga&lt;sub&gt;1-x&lt;/sub&gt;As single quantum well (QW) graded index separate confinement heterostructure
    corecore