30 research outputs found

    Use of sanger and next-generation sequencing to screen for mosaic and intronic APC variants in unexplained colorectal polyposis patients

    Get PDF
    In addition to classic germline APC gene variants, APC mosaicism and deep intronic germline APC variants have also been reported to be causes of adenomatous polyposis. In this study, we investigated 80 unexplained colorectal polyposis patients without germline pathogenic variants in known polyposis predisposing genes to detect mosaic and deep intronic APC variants. All patients developed more than 50 colorectal polyps, with adenomas being predominantly observed. To detect APC mosaicism, we performed next-generation sequencing (NGS) in leukocyte DNA. Furthermore, using Sanger sequencing, the cohort was screened for the following previously reported deep intronic pathogenic germline APC variants: c.1408 + 731C > T, p.(Gly471Serfs*55), c.1408 + 735A > T, p.(Gly471Serfs*55), c.1408 + 729A > G, p.(Gly471Serfs*55) and c.532-941G > A, p.(Phe178Argfs*22). We did not detect mosaic or intronic APC variants in the screened unexplained colorectal polyposis patients. The results of this study indicate that the deep intronic APC variants investigated in this study are not a cause of colorectal polyposis in this Dutch population. In addition, NGS did not detect any further mosaic variants in our cohort.Molecular tumour pathology - and tumour geneticsMTG2 - Moleculaire genetica van gastrointestinale tumore

    Low frequency of POLD1 and POLE exonuclease domain variants in patients with multiple colorectal polyps

    Get PDF
    Background Germline mutations affecting the exonuclease domains of POLE and POLD1 predispose to colorectal adenomas and carcinoma. Here, we aimed to screen the exonuclease domains to find the genetic causes of multiple colorectal polyps in unexplained cases. Methods Using a custom next-generation sequencing panel, we sequenced the exonuclease domains of POLE and POLD1 in 332 index patients diagnosed with multiple colorectal polyps without germline alteration in colorectal polyposis predisposing genes. Results We identified two variants of unknown significance. One germline POLD1 c.961G>A, p.(Gly321Ser) variant was found in two cases. The first patient was diagnosed with multiple polyps at age 35 and colorectal cancer (CRC) at age 37, with no known family history of CRC. The second patient was diagnosed with CRC at age 44 and cumulatively developed multiple polyps; this patient had two sisters with endometrial cancer who did not carry the variant. Furthermore, we identified a novel POLD1 c.955 T>G, p.(Cys319Gly) variant in a patient diagnosed with multiple colorectal adenomas at age 40. Co-segregation analysis showed that one sister who cumulatively developed multiple adenomas from age 34, and another sister who developed CRC at age 38 did not carry the variant. We did not identify pathogenic variants in POLE and POLD1. Conclusion This study confirms the low frequency of causal variants in these genes in the predisposition for multiple colorectal polyps, and also establishes that these genes are a rare cause of the disease.Cellular mechanisms in basic and clinical gastroenterology and hepatolog

    Gynecological surveillance and surgery outcomes in Dutch Lynch syndrome carriers

    Get PDF
    Simple SummaryFemale Lynch syndrome (LS) carriers have an increased risk to develop endometrial and ovarian cancer. In the Netherlands, carriers are therefore advised annual gynecological surveillance and eventually, risk-reducing surgery. Global gynecological LS surveillance guidelines are scarce and based on limited evidence. These are, however, warranted to offer accurate surveillance. To provide more insight into surveillance outcomes, this study assessed outcomes of gynecological surveillance and risk-reducing surgery in 164 LS carriers diagnosed in our center, with a median follow-up of 5.6 years per carrier. Although most surveillance visits happened within an advised timeframe, we observed large variability in how gynecological surveillance visits were performed. This finding stresses the need for development of clear and evidence-based guidelines. Endometrial cancers identified at surveillance were all found in early stage, mostly symptomatic, questioning surveillance benefit. Large, prospective studies should assess to what extent current LS surveillance programs contribute to early detection of gynecological tumors.Lynch syndrome (LS) is caused by pathogenic germline variants in DNA mismatch repair (MMR) genes, predisposing female carriers for endometrial cancer (EC) and ovarian cancer (OC). Since gynecological LS surveillance guidelines are based on little evidence, we assessed its outcomes. Data regarding gynecological tumors, surveillance, and (risk-reducing) surgery were collected from female LS carriers diagnosed in our center since 1993. Of 505 female carriers, 104 had a gynecological malignancy prior to genetic LS diagnosis. Of 264 carriers eligible for gynecological management, 164 carriers gave informed consent and had available surveillance data: 38 MLH1, 25 MSH2, 82 MSH6, and 19 PMS2 carriers (median follow-up 5.6 years). Surveillance intervals were within advised time in >80%. Transvaginal ultrasound, endometrial sampling, and CA125 measurements were performed in 76.8%, 35.9%, and 40.6%, respectively. Four symptomatic ECs, one symptomatic OC, and one asymptomatic EC were diagnosed. Endometrial hyperplasia was found in eight carriers, of whom three were symptomatic. Risk-reducing surgery was performed in 73 (45.5%) carriers (median age 51 years), revealing two asymptomatic ECs. All ECs were diagnosed in FIGO I. Gynecological management in LS carriers varied largely, stressing the need for uniform, evidence-based guidelines. Most ECs presented early and symptomatically, questioning the surveillance benefit in its current form.Hereditary cancer genetic

    The complexity of screening PMS2 in DNA isolated from formalin-fixed paraffin-embedded material

    Get PDF
    Germline variants in the DNA mismatch repair (MMR) gene PMS2 cause 1-14% of all Lynch Syndrome cancers. Correct variant analysis of PMS2 is complex due to the presence of multiple pseudogenes and the occurrence of gene conversion. The analysis complexity increases in highly fragmented DNA from formalin-fixed paraffin-embedded (FFPE) tissue. Here we describe a reliable approach to detect true PMS2 variants in fragmented DNA. A custom NGS panel designed for FFPE tissue was used targeting four MMR genes, POLE and POLD1. Amplicon design for PMS2 was based on the position of paralogous sequence variants (PSVs) that distinguish PMS2 from its pseudogenes. PMS2 variants in exons 1-11 can be correctly curated based on this information. For exons 12-15 this is less reliable as these undergo gene conversion. Using this method, we screened PMS2 variants in 125 MMR-deficient tumors. Of the 125 tumors tested, six were unexplained MMR-deficient tumors with solitary PMS2 protein expression loss. In these six tumors two unclassified variants (class 3) and five variants likely affecting function (class 4/5) were detected in PMS2. One microsatellite unstable tumor with positive staining for all MMR proteins was found to carry a frameshift PMS2 variant (class 5). No class 4 or class 5 PMS2 variants were detected in tumors with other patterns of MMR protein expression loss.Molecular tumour pathology - and tumour geneticsMTG2 - Moleculaire genetica van gastrointestinale tumore

    Whole Gene Capture Analysis of 15 CRC Susceptibility Genes in Suspected Lynch Syndrome Patients

    Get PDF
    This is the first study in sLS patients to include the entire genomic sequence of CRC susceptibility genes. An underlying somatic or germline MMR gene defect was identified in ten of 34 sLS patients (29%). In the remaining sLS patients, the underlying genetic defect explaining the MMR deficiency in their tumors might be found outside the genomic regions harboring the MMR and other known CRC susceptibility genes.Genome Instability and CancerMolecular Technology and Informatics for Personalised Medicine and Healt

    A novel nonsense B3GALTL mutation confirms Peters plus syndrome in a patient with multiple malformations and Peters anomaly

    No full text
    Peters plus syndrome is an autosomal recessive rare congenital disorder defined by corneal Peters anomaly with short disproportionate stature, development delay and dysmorphic facial features. In addition, cardiac, genito-urinary and/or central nervous system malformations can be present. Mutations in the beta-1,3-galactosyltransferase-like glycosyltransferase gene (B3GALTL) have been reported in patients with Peters plus syndrome prompting phenotype-genotype studies because of the variable clinical spectrum related to the syndrome. A 20 month old boy presenting with bilateral Peters anomaly in association with multiple developmental anomalies including cerebral malformations was found to carry a novel homozygous B3GALTL nonsense mutation [p.Tyr366X]. This is the first stop mutation described in association with this gene. The present report confirms the wide clinical spectrum of Peters plus syndrome, underlines the major clinical criteria of the syndrome and the major implication of B3GALTL gene in this condition. Ophthalmologic examination in multiple developmental anomalies remains an important clinical issue that may lead to specific gene screening. In Peters plus syndrome B3GALTL molecular test provides diagnosis confirmation and improves dramatically genetic counselling for the families.Genetics of disease, diagnosis and treatmen
    corecore