7 research outputs found

    Glial Cells Ontogeny in the Telencephalon and Mesencephalon of the Lizard Gallotia galloti

    No full text

    Efeito da luz e da temperatura na germinação de sementes de quatro espécies de Xyris L. (Xyridaceae) ocorrentes na Serra do Cipó, MG, Brasil Light and temperature effect on germination of four species of Xyris L. (Xyridaceae) seeds occurring at the Serra do Cipó, MG, Brazil

    No full text
    As espĂ©cies do gĂȘnero Xyris sĂŁo tĂ­picas de solos brejosos ou Ășmidos, sendo bastante freqĂŒentes nos campos rupestres de Minas Gerais. O objetivo deste estudo foi investigar o comportamento germinativo de sementes de X. cipoensis Smith & Downs, X. longiscapa A. Nilsson, X. platystachia A. Nilsson e X. trachyphylla Mart. sob diferentes condiçÔes de luz e temperatura. Os experimentos de germinação foram realizados em cĂąmaras de germinação nas temperaturas constantes de 15, 20, 25, 30, 35 e 40ÂșC, sob luz e escuro contĂ­nuos, e nas alternĂąncias de 25-15, 30-15, 30-20, 35-15, 35-20 e 35-25ÂșC, onde as temperaturas mais altas referem-se ao perĂ­odo de luz, sob fotoperĂ­odo de 12 horas. As quatro espĂ©cies de Xyris apresentam sementes pequenas e sensĂ­veis Ă  luz, com resposta nula de germinação no escuro. As sementes de X. cipoensis germinaram em faixa mais estreita de temperatura (20 a 30ÂșC), apresentando alta porcentagem de germinação na temperatura constante de 20ÂșC. A faixa de 15 a 30ÂșC foi favorĂĄvel Ă  germinação das sementes de X. longiscapa, X. platystachia e X. trachyphylla, apresentando baixo percentual de germinação a 15ÂșC. As temperaturas alternantes nĂŁo favoreceram a germinação em relação Ă s temperaturas constantes.<br>The Xyris genus species are typical from marshy or wet soils, being quite common on Minas Gerais rocky fields. The objective of this study was to investigate the germinative behavior of X. cipoensis Smith & Downs, X. longiscapa A. Nilsson, X. platystachia A. Nilsson and X. trachyphylla Mart. under different light and temperatures conditions. The germination experiments took place in germination chambers at constant temperatures of 15, 20, 25, 30, 35 and 40ÂșC, under continuous white light and darkness, and on the alternating temperatures of 25-15, 30-15, 30-20, 35-15, 35-20 and 35-25ÂșC, the higher temperature being in light at a 12 hours photoperiod. The four species of Xyris have small and light sensitive seeds, with no germination on darkness. The seeds of X. cipoensis germinated in a strict temperature (20 to 30ÂșC), presenting higher percentage of germination at the constant temperature of 20ÂșC. The 15 to 30ÂșC range were favorable to the germination of X. longiscapa, X. platystachia and X. trachyphylla seeds. These species presented low percentage of germination at 15ÂșC. The alternating temperature did not favor the germination when compared to the constant temperatures

    Detection and Validation of Native Plants Traditionally Used as Medicine in Guatemala

    No full text

    Portable Acceleration of CMS Computing Workflows with Coprocessors as a Service

    No full text
    Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. This approach can be easily generalized to different types of coprocessors and deployed on local CPUs without decreasing the throughput performance. We emphasize that the SONIC approach enables high coprocessor usage and enables the portability to run workflows on different types of coprocessors
    corecore