1,378 research outputs found
Aspects of U-duality in BLG models with Lorentzian metric 3-algebras
In our previous paper, it was shown that BLG model based on a Lorentzian
metric 3-algebra gives Dp-brane action whose worldvolume is compactified on
torus T^d (d=p-2). Here the 3-algebra was a generalized one with d+1 pairs of
Lorentzian metric generators and expressed in terms of a loop algebra with
central extensions. In this paper, we derive the precise relation between the
coupling constant of the super Yang-Mills, the moduli of T^d and some R-R flux
with VEV's of ghost fields associated with Lorentzian metric generators. In
particular, for d=1, we derive the Yang-Mills action with theta term and show
that SL(2,Z) Montonen-Olive duality is realized as the rotation of two VEV's.
Furthermore, some moduli parameters such as NS-NS 2-form flux are identified as
the deformation parameters of the 3-algebras. By combining them, we recover
most of the moduli parameters which are required by U-duality symmetry.Comment: 27 pages, v2: minor correction
Defect structures in metallic photonic crystals
Cataloged from PDF version of article.We have investigated metallic photonic crystals built around a layer‐by‐layer geometry. Two different crystal structures (face‐centered‐tetragonal and tetragonal) were built and their properties were compared. We obtained rejection rates of 7–8 dB per layer from both metallic crystals. Defect modes created by removing rods resulted in high peak transmission (80%), and high quality factors (1740). Our measurements were in good agreement with theoretical simulations.
© 1996 American Institute of Physic
Spin Excitations in La2CuO4: Consistent Description by Inclusion of Ring-Exchange
We consider the square lattice Heisenberg antiferromagnet with plaquette ring
exchange and a finite interlayer coupling leading to a consistent description
of the spin-wave excitation spectrum in La2CuO4. The values of the in-plane
exchange parameters, including ring-exchange J_{\Box}, are obtained
consistently by an accurate fit to the experimentally observed in-plane
spin-wave dispersion, while the out-of-plane exchange interaction is found from
the temperature dependence of the sublattice magnetization at low temperatures.
The fitted exchange interactions J=151.9 meV and J_{\Box}=0.24 J give values
for the spin stiffness and the Neel temperature in excellent agreement with the
experimental data.Comment: 4 pages, 1 figure, RevTe
Forbidden Landscape from Holography
We present a class of field configurations that are forbidden in the quantum
gravity because of inconsistency in the dual field theory from holography.
Scale invariant but non-conformal field theories are impossible in (1+1)
dimension, and so should be the corresponding gravity dual. In particular, the
"spontaneous Lorentz symmetry breaking" models and the "ghost condensation"
models, which are well-studied in phenomenology literatures, are forbidden in
any consistent quantum theories of gravity in (1+2) dimension since they
predict such inconsistent field configurations.Comment: 4pages, v2: some improvements, reference adde
Teleparallel Versions of Friedmann and Lewis-Papapetrou Spacetimes
This paper is devoted to investigate the teleparallel versions of the
Friedmann models as well as the Lewis-Papapetrou solution. We obtain the tetrad
and the torsion fields for both the spacetimes. It is shown that the
axial-vector vanishes for the Friedmann models. We discuss the different
possibilities of the axial-vector depending on the arbitrary functions
and in the Lewis-Papapetrou metric. The vector related with spin has
also been evaluated.Comment: 13 pages, accepted for publication in GR
(1+1)-Dirac particle with position-dependent mass in complexified Lorentz scalar interactions: effectively PT-symmetric
The effect of the built-in supersymmetric quantum mechanical language on the
spectrum of the (1+1)-Dirac equation, with position-dependent mass (PDM) and
complexified Lorentz scalar interactions, is re-emphasized. The signature of
the "quasi-parity" on the Dirac particles' spectra is also studied. A Dirac
particle with PDM and complexified scalar interactions of the form S(z)=S(x-ib)
(an inversely linear plus linear, leading to a PT-symmetric oscillator model),
and S(x)=S_{r}(x)+iS_{i}(x) (a PT-symmetric Scarf II model) are considered.
Moreover, a first-order intertwining differential operator and an
-weak-pseudo-Hermiticity generator are presented and a complexified
PT-symmetric periodic-type model is used as an illustrative example.Comment: 11 pages, no figures, revise
Gas diffusion through columnar laboratory sea ice: implications for mixed-layer ventilation of CO<sub>2</sub> in the seasonal ice zone
Gas diffusion through the porous microstructure of sea ice represents a pathway for ocean–atmosphere exchange and for transport of biogenic gases produced within sea ice. We report on the experimental determination of the bulk gas diffusion coefficients, D, for oxygen (O2) and sulphur hexafluoride (SF6) through columnar sea ice under constant ice thickness conditions for ice surface temperatures between -4 and -12 °C. Profiles of SF6 through the ice indicate decreasing gas concentration from the ice/water interface to the ice/air interface, with evidence for solubility partitioning between gas-filled and liquid-filled pore spaces. On average, DSF6 inline image was 1.3 × 10-4 cm2 s-1 (±40%) and DO2 was 3.9 × 10-5 cm2 s-1 (±41%). The preferential partitioning of SF6 to the gas phase, which is the dominant diffusion pathway produced the greater rate of SF6 diffusion. Comparing these estimates of D with an existing estimate of the air–sea gas transfer through leads indicates that ventilation of the mixed layer by diffusion through sea ice may be negligible, compared to air–sea gas exchange through fractures in the ice pack, even when the fraction of open water is less than 1%
Active Galaxies in the UV
In this article we present different aspects of AGN studies demonstrating the
importance of the UV spectral range. Most important diagnostic lines for
studying the general physical conditions as well as the metalicities in the
central broad line region in AGN are emitted in the UV. The UV/FUV continuum in
AGN excites not only the emission lines in the immediate surrounding but it is
responsible for the ionization of the intergalactic medium in the early stages
of the universe. Variability studies of the emission line profiles of AGN in
the UV give us information on the structure and kinematics of the immediate
surrounding of the central supermassive black hole as well as on its mass
itself.Comment: 29 pages, 13 figures, Ap&SS in pres
- …
