750 research outputs found

    The relationship between leisure activities and psychological resources that support a sustainable career: The role of leisure seriousness and work-leisure similarity

    Get PDF
    While leisure plays an increasingly important role in individuals' lives, little is known about its potential to influence career sustainability. Drawing on Conservation of Resources (COR) theory, we investigate whether investing extra time into leisure will have a positive or negative impact on career sustainability by either generating or depleting resources. Specifically, we examine the effects of time spent on leisure on the career-related resources of resilience and self-efficacy using data on within-person changes over the course of 7 monthly surveys. We propose that the effects of leisure on resources depend on the interplay between a) the approach individuals take to their leisure activity, in particular the level of “seriousness” of a leisure activity (i.e., the extent to which individuals identify with, and persevere in, their activity), and b) the similarity between work and leisure (i.e., the extent to which work and leisure involve similar demands and skills). We found that time spent on leisure over and above an individual's average was positively related to work-related self-efficacy, but only when the individual's leisure activities were high in seriousness and low in work-leisure similarity, or when they were low in seriousness and high in similarity. Investing time in leisure was negatively associated with self-efficacy when leisure activities were high in seriousness and similar to an individual's work. Our findings paint a complex picture of the potential influence of leisure on career sustainability and highlight the need to take a nuanced approach when studying the effects of leisure

    On the consistent solution of the gap--equation for spontaneously broken λΦ4\lambda \Phi^4-theory

    Full text link
    We present a self--consistent solution of the finite temperature gap--equation for λΦ4\lambda \Phi^4 theory beyond the Hartree-Fock approximation using a composite operator effective action. We find that in a spontaneously broken theory not only the so--called daisy and superdaisy graphs contribute to the resummed mass, but also resummed non--local diagrams are of the same order, thus altering the effective mass for small values of the latter.Comment: 15 pages of revtex + 3 uuencoded postscript figures, ENSLAPP A-488/9

    Coin Tossing as a Billiard Problem

    Full text link
    We demonstrate that the free motion of any two-dimensional rigid body colliding elastically with two parallel, flat walls is equivalent to a billiard system. Using this equivalence, we analyze the integrable and chaotic properties of this new class of billiards. This provides a demonstration that coin tossing, the prototypical example of an independent random process, is a completely chaotic (Bernoulli) problem. The related question of which billiard geometries can be represented as rigid body systems is examined.Comment: 16 pages, LaTe

    Asymptotically Improved Convergence of Optimized Perturbation Theory in the Bose-Einstein Condensation Problem

    Full text link
    We investigate the convergence properties of optimized perturbation theory, or linear δ\delta expansion (LDE), within the context of finite temperature phase transitions. Our results prove the reliability of these methods, recently employed in the determination of the critical temperature T_c for a system of weakly interacting homogeneous dilute Bose gas. We carry out the explicit LDE optimized calculations and also the infrared analysis of the relevant quantities involved in the determination of TcT_c in the large-N limit, when the relevant effective static action describing the system is extended to O(N) symmetry. Then, using an efficient resummation method, we show how the LDE can exactly reproduce the known large-N result for TcT_c already at the first non-trivial order. Next, we consider the finite N=2 case where, using similar resummation techniques, we improve the analytical results for the nonperturbative terms involved in the expression for the critical temperature allowing comparison with recent Monte Carlo estimates of them. To illustrate the method we have considered a simple geometric series showing how the procedure as a whole works consistently in a general case.Comment: 38 pages, 3 eps figures, Revtex4. Final version in press Phys. Rev.

    Interaction of N solitons in the massive Thirring model and optical gap system: the Complex Toda Chain Model

    Full text link
    Using the Karpman-Solov''ev quasiparticle approach for soliton-soliton interaction I show that the train propagation of N well separated solitons of the massive Thirring model is described by the complex Toda chain with N nodes. For the optical gap system a generalised (non-integrable) complex Toda chain is derived for description of the train propagation of well separated gap solitons. These results are in favor of the recently proposed conjecture of universality of the complex Toda chain.Comment: RevTex, 23 pages, no figures. Submitted to Physical Review

    Higher Order Evaluation of the Critical Temperature for Interacting Homogeneous Dilute Bose Gases

    Get PDF
    We use the nonperturbative linear \delta expansion method to evaluate analytically the coefficients c_1 and c_2^{\prime \prime} which appear in the expansion for the transition temperature for a dilute, homogeneous, three dimensional Bose gas given by T_c= T_0 \{1 + c_1 a n^{1/3} + [ c_2^{\prime} \ln(a n^{1/3}) +c_2^{\prime \prime} ] a^2 n^{2/3} + {\cal O} (a^3 n)\}, where T_0 is the result for an ideal gas, a is the s-wave scattering length and n is the number density. In a previous work the same method has been used to evaluate c_1 to order-\delta^2 with the result c_1= 3.06. Here, we push the calculation to the next two orders obtaining c_1=2.45 at order-\delta^3 and c_1=1.48 at order-\delta^4. Analysing the topology of the graphs involved we discuss how our results relate to other nonperturbative analytical methods such as the self-consistent resummation and the 1/N approximations. At the same orders we obtain c_2^{\prime\prime}=101.4, c_2^{\prime \prime}=98.2 and c_2^{\prime \prime}=82.9. Our analytical results seem to support the recent Monte Carlo estimates c_1=1.32 \pm 0.02 and c_2^{\prime \prime}= 75.7 \pm 0.4.Comment: 29 pages, 3 eps figures. Minor changes, one reference added. Version in press Physical Review A (2002

    Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential

    Full text link
    We address a two-dimensional nonlinear elliptic problem with a finite-amplitude periodic potential. For a class of separable symmetric potentials, we study the bifurcation of the first band gap in the spectrum of the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to describe this bifurcation. The coupled-mode equations are derived by the rigorous analysis based on the Fourier--Bloch decomposition and the Implicit Function Theorem in the space of bounded continuous functions vanishing at infinity. Persistence of reversible localized solutions, called gap solitons, beyond the coupled-mode equations is proved under a non-degeneracy assumption on the kernel of the linearization operator. Various branches of reversible localized solutions are classified numerically in the framework of the coupled-mode equations and convergence of the approximation error is verified. Error estimates on the time-dependent solutions of the Gross--Pitaevskii equation and the coupled-mode equations are obtained for a finite-time interval.Comment: 32 pages, 16 figure

    On the connection between the Nekhoroshev theorem and Arnold Diffusion

    Full text link
    The analytical techniques of the Nekhoroshev theorem are used to provide estimates on the coefficient of Arnold diffusion along a particular resonance in the Hamiltonian model of Froeschl\'{e} et al. (2000). A resonant normal form is constructed by a computer program and the size of its remainder Ropt||R_{opt}|| at the optimal order of normalization is calculated as a function of the small parameter ϵ\epsilon. We find that the diffusion coefficient scales as DRopt3D\propto||R_{opt}||^3, while the size of the optimal remainder scales as Roptexp(1/ϵ0.21)||R_{opt}|| \propto\exp(1/\epsilon^{0.21}) in the range 104ϵ10210^{-4}\leq\epsilon \leq 10^{-2}. A comparison is made with the numerical results of Lega et al. (2003) in the same model.Comment: Accepted in Celestial Mechanics and Dynamical Astronom

    Gauging and symplectic blowing up in nonlinear sigma-models: I. point singularities

    Full text link
    In this paper a two dimensional non-linear sigma model with a general symplectic manifold with isometry as target space is used to study symplectic blowing up of a point singularity on the zero level set of the moment map associated with a quasi-free Hamiltonian action. We discuss in general the relation between symplectic reduction and gauging of the symplectic isometries of the sigma model action. In the case of singular reduction, gauging has the same effect as blowing up the singular point by a small amount. Using the exponential mapping of the underlying metric, we are able to construct symplectic diffeomorphisms needed to glue the blow-up to the global reduced space which is regular, thus providing a transition from one symplectic sigma model to another one free of singularities.Comment: 32 pages, LaTex, THEP 93/24 (corrected and expanded(about 5 pages) version

    On the Convergence of the Linear Delta Expansion for the Shift in T_c for Bose-Einstein Condensation

    Full text link
    The leading correction from interactions to the transition temperature T_c for Bose-Einstein condensation can be obtained from a nonperturbative calculation in the critical O(N) scalar field theory in 3 dimensions with N=2. We show that the linear delta expansion can be applied to this problem in such a way that in the large-N limit it converges to the exact analytic result. If the principal of minimal sensitivity is used to optimize the convergence rate, the errors seem to decrease exponentially with the order in the delta expansion. For N=2, we calculate the shift in T_c to fourth order in delta. The results are consistent with slow convergence to the results of recent lattice Monte Carlo calculations.Comment: 26 pages, latex, 8 figure
    corecore