8 research outputs found

    Ly49A inhibitory receptors redistribute on natural killer cells during target cell interaction

    No full text
    When T effector cells meet antigen-bearing target cells, there is a specific accumulation of T-cell receptors, co-receptors and structural proteins at the point of cell–cell contact. Ly49 inhibitory receptors bind to murine major histocompatibility complex (MHC) class I molecules and prevent natural killer-(NK) cell cytotoxicity. In this study we have tested whether inhibitory receptors accumulate at the point of cell–cell contact when NK cells encounter target cells bearing MHC class I ligands for those inhibitory receptors. We have used RNK-16 effector cells that express Ly49A receptors and have found that there was a specific accumulation of Ly49A receptors at the point of NK cell–target cell contact when the target cells expressed H-2Dd. We also observed that engagement of Ly49A on NK cells resulted in an altered redistribution of potential triggering receptors CD2 and NKR-P1. These data indicate that inhibitory receptors, like activating receptors, may specifically aggregate at the point of cell–cell contact which may be necessary for them to mediate their full inhibitory effect

    Characterization of a surface membrane molecule expressed by natural killer cells in most inbred mouse strains: monoclonal antibody C9.1 identifies an allelic form of the 2B4 antigen

    No full text
    A newly generated monoclonal antibody (mAb C9.1) described in this study identifies a surface membrane molecule that is involved in the lytic programme of activated natural killer (NK) cells. This conclusion is based on the facts that, first, this antigen was expressed on the vast majority of surface immunoglobulin (sIg)− CD3− CD4− CD8− spleen lymphocytes, albeit it was also present on minor subsets of sIg+ B (≈7%) and CD3+ T (≈2%) lymphocytes; second, that all splenic NK activity was contained within the C9.1+ cell population, and was almost totally abolished by treatment of spleen cells with mAb C9.1 and complement; third, that mAb C9.1 was capable of increasing interleukin-2-cultured and in vivo polyinosinic:polycytidylic acid-activated, NK cell-mediated, antibody-redirected lysis, but not freshly isolated NK cell-mediated killing. Furthermore, the strain distribution of the C9.1 antigen was shown to be antithetical to that of the 2B4 antigen already described as a molecule associated with major histocompatibility complex-unrestricted killing mediated by activated NK cells. The gene encoding C9.1 antigen was linked to the Akp1 isozyme locus on chromosome 1 close to the 2B4 gene. Although C9.1 and 2B4 were monomeric glycoproteins of 78 000 MW and 66 000 MW, respectively, removal of N-linked sugars from both antigens by endoglycosidase F yielded identical protein backbones of 38 000 MW. Thus, all of these results suggest that mAb C9.1 recognizes an allelic form of the 2B4 antigen. However, the detection of mAb C9.1-reactive antigen on a minor subset of B cells may suggest a possible reactivity of mAb C9.1 with some product of other members of the 2B4 family genes

    Depletion of dendritic cells delays ovarian cancer progression by boosting antitumor immunity

    No full text
    Dendritic cells (DC) and cytokines that expand myeloid progenitors are widely used to treat cancer. Here, we show that CD11c(+)DEC205(+) DCs coexpressing alpha-smooth muscle actin and VE-cadherin home to perivascular areas in the ovarian cancer microenvironment and are required for the maintenance of tumor vasculature. Consequently, depletion of DCs in mice bearing established ovarian cancer by targeting different specific markers significantly delays tumor growth and enhances the effect of standard chemotherapies. Tumor growth restriction was associated with vascular apoptosis after DC ablation followed by necrosis, which triggered an antitumor immunogenic boost. Our findings provide a mechanistic rationale for selectively eliminating tumor-associated leukocytes to promote antitumor immunity while impeding tumor vascularization and to develop more effective DC vaccines based on a better understanding of the tumor microenvironment

    Depletion of dendritic cells delays ovarian cancer progression by boosting antitumor immunity

    No full text
    Dendritic cells (DC) and cytokines that expand myeloid progenitors are widely used to treat cancer. Here, we show that CD11c(+)DEC205(+) DCs coexpressing alpha-smooth muscle actin and VE-cadherin home to perivascular areas in the ovarian cancer microenvironment and are required for the maintenance of tumor vasculature. Consequently, depletion of DCs in mice bearing established ovarian cancer by targeting different specific markers significantly delays tumor growth and enhances the effect of standard chemotherapies. Tumor growth restriction was associated with vascular apoptosis after DC ablation followed by necrosis, which triggered an antitumor immunogenic boost. Our findings provide a mechanistic rationale for selectively eliminating tumor-associated leukocytes to promote antitumor immunity while impeding tumor vascularization and to develop more effective DC vaccines based on a better understanding of the tumor microenvironment

    Mouse Chromosome 6

    No full text
    corecore