181 research outputs found

    Study of outgoing longwave radiation anomalies associated with Haiti earthquake

    Get PDF
    The paper presents an analysis by using the methods of Eddy field calculation mean and wavelet maxima to detect seismic anomalies within the outgoing longwave radiation (OLR) data based on time and space. The distinguishing feature of the method of Eddy field calculation mean is that we can calculate "the total sum of the difference value" of "the measured value" between adjacent points, which could highlight the singularity within data. The identified singularities are further validated by wavelet maxima, which using wavelet transformations as data mining tools by computing the maxima that can be used to identify obvious anomalies within OLR data. The two methods has been applied to carry out a comparative analysis of OLR data associated with the earthquake recently occurred in Haiti on 12 January 2010. Combining with the tectonic explanation of spatial and temporal continuity of the abnormal phenomena, the analyzed results have indicated a number of singularities associated with the possible seismic anomalies of the earthquake and from the comparative experiments and analyses by using the two methods, which follow the same time and space, we conclude that the singularities observed from 19 to 24 December 2009 could be the earthquake precursor of Haiti earthquake

    Correlated Hybrid Fluctuations from Inflation with Thermal Dissipation

    Full text link
    We investigate the primordial scalar perturbations in the thermal dissipative inflation where the radiation component (thermal bath) persists and the density fluctuations are thermally originated. The perturbation generated in this model is hybrid, i.e. it consists of both adiabatic and isocurvature components. We calculate the fractional power ratio (SS) and the correlation coefficient (cos⁡Δ\cos\Delta) between the adiabatic and the isocurvature perturbations at the commencing of the radiation regime. Since the adiabatic/isocurvature decomposition of hybrid perturbations generally is gauge-dependent at super-horizon scales when there is substantial energy exchange between the inflaton and the thermal bath, we carefully perform a proper decomposition of the perturbations. We find that the adiabatic and the isocurvature perturbations are correlated, even though the fluctuations of the radiation component is considered uncorrelated with that of the inflaton. We also show that both SS and cos⁡Δ\cos \Delta depend mainly on the ratio between the dissipation coefficient Γ\Gamma and the Hubble parameter HH during inflation. The correlation is positive (cos⁡Δ>0\cos\Delta > 0) for strong dissipation cases where Γ/H>0.2\Gamma/H >0.2, and is negative for weak dissipation instances where Γ/H<0.2\Gamma/H <0.2. Moreover, SS and cos⁡Δ\cos \Delta in this model are not independent of each other. The predicted relation between SS and cos⁡Δ\cos\Delta is consistent with the WMAP observation. Other testable predictions are also discussed.Comment: 18 pages using revtex4, accepted for publication in PR

    Effects of dark sectors' mutual interaction on the growth of structures

    Full text link
    We present a general formalism to study the growth of dark matter perturbations when dark energy perturbations and interactions between dark sectors are present. We show that dynamical stability of the growth of structure depends on the type of coupling between dark sectors. By taking the appropriate coupling to ensure the stable growth of structure, we observe that the effect of the dark sectors' interaction overwhelms that of dark energy perturbation on the growth function of dark matter perturbation. Due to the influence of the interaction, the growth index can differ from the value without interaction by an amount within the observational sensibility, which provides a possibility to disclose the interaction between dark sectors through future observations on the growth of large structure.Comment: 15 pages, 4 figures, revised version, to appear in JCA

    The influence of gene expression time delays on Gierer-Meinhardt pattern formation systems

    Get PDF
    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer–Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer–Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens

    Cosmic coincidence problem and variable constants of physics

    Full text link
    The standard model of cosmology is investigated using time dependent cosmological constant Λ\Lambda and Newton's gravitational constant GG. The total energy content is described by the modified Chaplygin gas equation of state. It is found that the time dependent constants coupled with the modified Chaplygin gas interpolate between the earlier matter to the later dark energy dominated phase of the universe. We also achieve a convergence of parameter ω→−1\omega\to-1, with minute fluctuations, showing an evolving ω\omega. Thus our model fairly alleviates the cosmic coincidence problem which demands ω=−1\omega=-1 at present time.Comment: 27 pages, 15 figure

    Suppressing CMB Quadrupole with a Bounce from Contracting Phase to Inflation

    Full text link
    Recent released WMAP data show a low value of quadrupole in the CMB temperature fluctuations, which confirms the early observations by COBE. In this paper, a scenario, in which a contracting phase is followed by an inflationary phase, is constructed. We calculate the perturbation spectrum and show that this scenario can provide a reasonable explanation for lower CMB anisotropies on large angular scales.Comment: 5 pages, 3 figure

    Aberrant behaviours of reaction diffusion self-organisation models on growing domains in the presence of gene expression time delays

    Get PDF
    Turing’s pattern formation mechanism exhibits sensitivity to the details of the initial conditions suggesting that, in isolation, it cannot robustly generate pattern within noisy biological environments. Nonetheless, secondary aspects of developmental self-organisation, such as a growing domain, have been shown to ameliorate this aberrant model behaviour. Furthermore, while in-situ hybridisation reveals the presence of gene expression in developmental processes, the influence of such dynamics on Turing’s model has received limited attention. Here, we novelly focus on the Gierer–Meinhardt reaction diffusion system considering delays due the time taken for gene expression, while incorporating a number of different domain growth profiles to further explore the influence and interplay of domain growth and gene expression on Turing’s mechanism. We find extensive pathological model behaviour, exhibiting one or more of the following: temporal oscillations with no spatial structure, a failure of the Turing instability and an extreme sensitivity to the initial conditions, the growth profile and the duration of gene expression. This deviant behaviour is even more severe than observed in previous studies of Schnakenberg kinetics on exponentially growing domains in the presence of gene expression (Gaffney and Monk in Bull. Math. Biol. 68:99–130, 2006). Our results emphasise that gene expression dynamics induce unrealistic behaviour in Turing’s model for multiple choices of kinetics and thus such aberrant modelling predictions are likely to be generic. They also highlight that domain growth can no longer ameliorate the excessive sensitivity of Turing’s mechanism in the presence of gene expression time delays. The above, extensive, pathologies suggest that, in the presence of gene expression, Turing’s mechanism would generally require a novel and extensive secondary mechanism to control reaction diffusion patterning

    Evolution and Flare Activity of Delta-Sunspots in Cycle 23

    Get PDF
    The emergence and magnetic evolution of solar active regions (ARs) of beta-gamma-delta type, which are known to be highly flare-productive, were studied with the SOHO/MDI data in Cycle 23. We selected 31 ARs that can be observed from their birth phase, as unbiased samples for our study. From the analysis of the magnetic topology (twist and writhe), we obtained the following results. i) Emerging beta-gamma-delta ARs can be classified into three topological types as "quasi-beta", "writhed" and "top-to-top". ii) Among them, the "writhed" and "top-to-top" types tend to show high flare activity. iii) As the signs of twist and writhe agree with each other in most cases of the "writhed" type (12 cases out of 13), we propose a magnetic model in which the emerging flux regions in a beta-gamma-delta AR are not separated but united as a single structure below the solar surface. iv) Almost all the "writhed"-type ARs have downward knotted structures in the mid portion of the magnetic flux tube. This, we believe, is the essential property of beta-gamma-delta ARs. v) The flare activity of beta-gamma-delta ARs is highly correlated not only with the sunspot area but also with the magnetic complexity. vi) We suggest that there is a possible scaling-law between the flare index and the maximum umbral area

    Inflation, cold dark matter, and the central density problem

    Full text link
    A problem with high central densities in dark halos has arisen in the context of LCDM cosmologies with scale-invariant initial power spectra. Although n=1 is often justified by appealing to the inflation scenario, inflationary models with mild deviations from scale-invariance are not uncommon and models with significant running of the spectral index are plausible. Even mild deviations from scale-invariance can be important because halo collapse times and densities depend on the relative amount of small-scale power. We choose several popular models of inflation and work out the ramifications for galaxy central densities. For each model, we calculate its COBE-normalized power spectrum and deduce the implied halo densities using a semi-analytic method calibrated against N-body simulations. We compare our predictions to a sample of dark matter-dominated galaxies using a non-parametric measure of the density. While standard n=1, LCDM halos are overdense by a factor of 6, several of our example inflation+CDM models predict halo densities well within the range preferred by observations. We also show how the presence of massive (0.5 eV) neutrinos may help to alleviate the central density problem even with n=1. We conclude that galaxy central densities may not be as problematic for the CDM paradigm as is sometimes assumed: rather than telling us something about the nature of the dark matter, galaxy rotation curves may be telling us something about inflation and/or neutrinos. An important test of this idea will be an eventual consensus on the value of sigma_8, the rms overdensity on the scale 8 h^-1 Mpc. Our successful models have values of sigma_8 approximately 0.75, which is within the range of recent determinations. Finally, models with n>1 (or sigma_8 > 1) are highly disfavored.Comment: 13 pages, 6 figures. Minor changes made to reflect referee's Comments, error in Eq. (18) corrected, references updated and corrected, conclusions unchanged. Version accepted for publication in Phys. Rev. D, scheduled for 15 August 200
    • 

    corecore