14 research outputs found

    Ageing-related cardiomyocyte functional decline is sex and angiotensin II dependent.

    No full text
    Clinically, heart failure is an age-dependent pathological phenomenon and displays sex-specific characteristics. The renin-angiotensin system mediates cardiac pathology in heart failure. This study investigated the sexually dimorphic functional effects of ageing combined with angiotensin II (AngII) on cardiac muscle cell function, twitch and Ca(2+)-handling characteristics of isolated cardiomyocytes from young (~13 weeks) and aged (~87 weeks) adult wild type (WT) and AngII-transgenic (TG) mice. We hypothesised that AngII-induced contractile impairment would be exacerbated in aged female cardiomyocytes and linked to Ca(2+)-handling disturbances. AngII-induced cardiomyocyte hypertrophy was evident in young adult mice of both sexes and accentuated by age (aged adult ~21-23 % increases in cell length relative to WT). In female AngII-TG mice, ageing was associated with suppressed cardiomyocyte contractility (% shortening, maximum rate of shortening, maximum rate of relaxation). This was associated with delayed cytosolic Ca(2+) removal during twitch relaxation (Tau ~20 % increase relative to young adult female WT), and myofilament responsiveness to Ca(2+) was maintained. In contrast, aged AngII-TG male cardiomyocytes exhibited peak shortening equivalent to young TG; yet, myofilament Ca(2+) responsiveness was profoundly reduced with ageing. Increased pro-arrhythmogenic spontaneous activity was evident with age and cardiac AngII overexpression in male mice (42-55 % of myocytes) but relatively suppressed in female aged transgenic mice. Female myocytes with elevated AngII appear more susceptible to an age-related contractile deficit, whereas male AngII-TG myocytes preserve contractile function with age but exhibit desensitisation of myofilaments to Ca(2+) and a heightened vulnerability to arrhythmic activity. These findings support the contention that sex-specific therapies are required for the treatment of age-progressive heart failure

    Dietary fish oil is antihypertrophic but does not enhance postischemic myocardial function in female mice.

    Get PDF
    Clinically and experimentally, a case for omega-3 polyunsaturated fatty acid (PUFA) cardioprotection in females has not been clearly established. The goal of this study was to investigate whether dietary omega-3 PUFA supplementation could provide ischemic protection in female mice with an underlying genetic predisposition to cardiac hypertrophy. Mature female transgenic mice (TG) with cardiac-specific overexpression of angiotensinogen that develop normotensive cardiac hypertrophy and littermate wild-type (WT) mice were fed a fish oil-derived diet (FO) or PUFA-matched control diet (CTR) for 4 wk. Myocardial membrane lipids, ex vivo cardiac performance (intraventricular balloon) after global no-flow ischemia and reperfusion (15/30 min), and reperfusion arrhythmia incidence were assessed. FO diet suppressed cardiac growth by 5% and 10% in WT and TG, respectively (P < 0.001). The extent of mechanical recovery [rate-pressure product (RPP) = beats/min x mmHg] of FO-fed WT and TG hearts was similar (50 +/- 7% vs. 45 +/- 12%, 30 min reperfusion), and this was not significantly different from CTR-fed WT or TG. To evaluate whether systemic estrogen was masking a protective effect of the FO diet, the responses of ovariectomized (OVX) WT and TG mice to FO dietary intervention were assessed. The extent of mechanical recovery of FO-fed OVX WT and TG (RPP, 50 +/- 4% vs. 64 +/- 8%) was not enhanced compared with CTR-fed mice (RPP, 60 +/- 11% vs. 80 +/- 8%, P = 0.335). Dietary FO did not suppress the incidence of reperfusion arrhythmias in WT or TG hearts (ovary-intact mice or OVX). Our findings indicate a lack of cardioprotective effect of dietary FO in females, determined by assessment of mechanical and arrhythmic activity postischemia in a murine ex vivo heart model
    corecore