63 research outputs found

    Big Crunch Avoidance in k = 1 Semi-Classical Loop Quantum Cosmology

    Get PDF
    It is well known that a closed universe with a minimally coupled massive scalar field always collapses to a singularity unless the initial conditions are extremely fine tuned. We show that the corrections to the equations of motion for the massive scalar field, given by loop quantum gravity in high curvature regime, always lead to a bounce independently of the initial conditions. In contrast to the previous works in loop quantum cosmology, we note that the singularity can be avoided even at the semi-classical level of effective dynamical equations with non-perturbative quantum gravity modifications, without using a discrete quantum evolution.Comment: Minor changes, To appear in Physical Review

    Seminal magnetic fields from Inflato-electromagnetic Inflation

    Full text link
    We extend some previous attempts to explain the origin and evolution of primordial magnetic fields during inflation induced from a 5D vacuum. We show that the usual quantum fluctuations of a generalized 5D electromagnetic field cannot provide us with the desired magnetic seeds. We show that special fields without propagation on the extra non-compact dimension are needed to arrive to appreciable magnetic strengths. We also identify a new magnetic tensor field BijB_{ij} in this kind of extra dimensional theories. Our results are in very good agreement with observational requirements, in particular from TeV Blazars and CMB radiation limits we obtain that primordial cosmological magnetic fields should be close scale invariance.Comment: Improved version. arXiv admin note: text overlap with arXiv:1007.3891 by other author

    The Evolution of Inverse Power Law Quintessence at Low Redshift

    Full text link
    Quintessence models based on a scalar field, phi, with an inverse power law potential display simple tracking behavior at early times, when the quintessence energy density, rho_phi, is sub-dominant. At late times, when rho_phi becomes comparable to the matter density, the evolution of phi diverges from its scaling behavior. We calculate the first order departure of phi from its tracker solution at low redshift. Our results for the evolution of phi, rho_phi, Omega_phi, and w are suprisingly accurate even down to z=0. We find that w and Omega_phi are related linearly to first order. We also derive a semi-analytic expression for w(z) which is accurate to within a few percent. Our analytic techniques are potentially applicable to any quintessence model in which the quintessence component comes to dominate at late times.Comment: 6 pages, 6 figures, new figure added, numerous clarification

    Model-independent dark energy test with sigma_8 using results from the Wilkinson Microwave Anisotropy Probe

    Get PDF
    By combining the recent WMAP measurements of the cosmic microwave background anisotropies and the results of the recent luminosity distance measurements to type-Ia supernovae, we find that the normalization of the matter power spectrum on cluster scales, sigma_8, can be used to discriminate between dynamical models of dark energy (quintessence models) and a conventional cosmological constant model (LCDM).Comment: 5 pages, 6 figures. Additional discussion and reference, matches PRD accepted versio

    Large-scale magnetic fields from inflation due to a CPTCPT-even Chern-Simons-like term with Kalb-Ramond and scalar fields

    Full text link
    We investigate the generation of large-scale magnetic fields due to the breaking of the conformal invariance in the electromagnetic field through the CPTCPT-even dimension-six Chern-Simons-like effective interaction with a fermion current by taking account of the dynamical Kalb-Ramond and scalar fields in inflationary cosmology. It is explicitly demonstrated that the magnetic fields on 1Mpc scale with the field strength of ∌10−9\sim 10^{-9}G at the present time can be induced.Comment: 18 pages, 6 figures, version accepted for publication in Eur. Phys. J.

    A systematic review of the effects of exercise interventions on body composition in HIV+ adults

    Get PDF
    Over the years, physical activity and exercise have been used to positively impact the health and quality of life of persons infected with HIV and, more recently, has been associated with a spectrum of body composition changes. The aim of this review was to examine the effects of various exercise interventions on body composition in HIV positive adults, using a search strategy of randomized, controlled trials (RCTs). A systematic review was performed by five independent reviewers using a predetermined protocol adapted from previous research for assessing the articles for inclusion, the extracted data, and methodological quality. Eight RCTs involving 430 (26% female) HIV positive adults performing exercise a minimum of thrice weekly for at least six weeks were finally selected: Four were progressive resistance training (PRT) studies, three were aerobic training (AT) studies, and one involved yoga. In the PRT studies, there were significant increases in three anthropometric measures, namely, body mass, sum of skinfolds and sum of limb girths. In the AT studies, significant decreases were found in seven anthropometric measures, namely, body mass index, waist-hip ratio, body mass, triceps skinfold, waist circumference and sum of skinfolds. With yoga, the changes were nonsignificant. Exercise contributes to improved body composition and, when applied safely, appears to be beneficial for adults living with HIV/AIDS. However, these findings should be interpreted cautiously due to the relatively few RCTs published to date. Future studies would benefit from increased attention to sample size, female participants, participant follow-up, complete statistical analysis and intention-to-treat analysis.Scopu

    Modern temporal network theory: A colloquium

    Full text link
    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.Comment: Final accepted versio
    • 

    corecore