42 research outputs found
The impact of a wind switch on the stability of traveling fronts in a reaction–diffusion model of fire propagation
For certain values of the wave speed parameter, evolution equations for the temperature of a region of fuel admit traveling wave solutions describing fire fronts. We consider such a system in the form of a nonlinear reaction–diffusion equation with a first-order forcing term capturing the combined effects of ambient and fire-induced wind. The fire-induced wind is introduced by way of a piecewise continuous function that “switches” in space. We demonstrate that, in the case of a spatially dependent wind, traveling wave solutions corresponding to fire fronts exist for a continuum of wave speeds rather than for a single unique speed. Using geometric methods, we determine the range of allowable speeds, refine this range to only those fronts which will persist in nature, and develop a selection mechanism to identify the specific wind configuration corresponding to the most stable solution. For this spectrally preferred front, we find that the wind switch occurs ahead of the fireline in a manner consistent with the physics of air entrainment. Even when the wind is not coupled to the temperature and is instead imposed as an external forcing, the conditions on the existence and stability of front solutions force the wind term in to a configuration reflective of physical reality
The influence of fractional diffusion in Fisher-KPP equations
We study the Fisher-KPP equation where the Laplacian is replaced by the
generator of a Feller semigroup with power decaying kernel, an important
example being the fractional Laplacian. In contrast with the case of the stan-
dard Laplacian where the stable state invades the unstable one at constant
speed, we prove that with fractional diffusion, generated for instance by a
stable L\'evy process, the front position is exponential in time. Our results
provide a mathe- matically rigorous justification of numerous heuristics about
this model
L^2 stability estimates for shock solutions of scalar conservation laws using the relative entropy method
We consider scalar nonviscous conservation laws with strictly convex flux in
one spatial dimension, and we investigate the behavior of bounded L^2
perturbations of shock wave solutions to the Riemann problem using the relative
entropy method. We show that up to a time-dependent translation of the shock,
the L^2 norm of a perturbed solution relative to the shock wave is bounded
above by the L^2 norm of the initial perturbation.Comment: 17 page
Unstable gap solitons in inhomogeneous nonlinear Schrödinger equations
A periodically inhomogeneous Schrödinger equation is considered. The inhomogeneity is reflected through a non-uniform coefficient of the linear and nonlinear term in the equation. Due to the periodic inhomogeneity of the linear term, the system may admit spectral bands. When the oscillation frequency of a localized solution resides in one of the finite band gaps, the solution is a gap soliton, characterized by the presence of infinitely many zeros in the spatial profile of the soliton. Recently, how to construct such gap solitons through a composite phase portrait is shown. By exploiting the phase-space method and combining it with the application of a topological argument, it is shown that the instability of a gap soliton can be described by the phase portrait of the solution. Surface gap solitons at the interface between a periodic inhomogeneous and a homogeneous medium are also discussed. Numerical calculations are presented accompanying the analytical results
Singularly Perturbed Monotone Systems and an Application to Double Phosphorylation Cycles
The theory of monotone dynamical systems has been found very useful in the
modeling of some gene, protein, and signaling networks. In monotone systems,
every net feedback loop is positive. On the other hand, negative feedback loops
are important features of many systems, since they are required for adaptation
and precision. This paper shows that, provided that these negative loops act at
a comparatively fast time scale, the main dynamical property of (strongly)
monotone systems, convergence to steady states, is still valid. An application
is worked out to a double-phosphorylation ``futile cycle'' motif which plays a
central role in eukaryotic cell signaling.Comment: 21 pages, 3 figures, corrected typos, references remove
Stability of Spatial Optical Solitons
We present a brief overview of the basic concepts of the soliton stability
theory and discuss some characteristic examples of the instability-induced
soliton dynamics, in application to spatial optical solitons described by the
NLS-type nonlinear models and their generalizations. In particular, we
demonstrate that the soliton internal modes are responsible for the appearance
of the soliton instability, and outline an analytical approach based on a
multi-scale asymptotic technique that allows to analyze the soliton dynamics
near the marginal stability point. We also discuss some results of the rigorous
linear stability analysis of fundamental solitary waves and nonlinear impurity
modes. Finally, we demonstrate that multi-hump vector solitary waves may become
stable in some nonlinear models, and discuss the examples of stable
(1+1)-dimensional composite solitons and (2+1)-dimensional dipole-mode solitons
in a model of two incoherently interacting optical beams.Comment: 34 pages, 9 figures; to be published in: "Spatial Optical Solitons",
  Eds. W. Torruellas and S. Trillo (Springer, New York
A mathematical framework for critical transitions: normal forms, variance and applications
Critical transitions occur in a wide variety of applications including
mathematical biology, climate change, human physiology and economics. Therefore
it is highly desirable to find early-warning signs. We show that it is possible
to classify critical transitions by using bifurcation theory and normal forms
in the singular limit. Based on this elementary classification, we analyze
stochastic fluctuations and calculate scaling laws of the variance of
stochastic sample paths near critical transitions for fast subsystem
bifurcations up to codimension two. The theory is applied to several models:
the Stommel-Cessi box model for the thermohaline circulation from geoscience,
an epidemic-spreading model on an adaptive network, an activator-inhibitor
switch from systems biology, a predator-prey system from ecology and to the
Euler buckling problem from classical mechanics. For the Stommel-Cessi model we
compare different detrending techniques to calculate early-warning signs. In
the epidemics model we show that link densities could be better variables for
prediction than population densities. The activator-inhibitor switch
demonstrates effects in three time-scale systems and points out that excitable
cells and molecular units have information for subthreshold prediction. In the
predator-prey model explosive population growth near a codimension two
bifurcation is investigated and we show that early-warnings from normal forms
can be misleading in this context. In the biomechanical model we demonstrate
that early-warning signs for buckling depend crucially on the control strategy
near the instability which illustrates the effect of multiplicative noise.Comment: minor corrections to previous versio
