We consider scalar nonviscous conservation laws with strictly convex flux in
one spatial dimension, and we investigate the behavior of bounded L^2
perturbations of shock wave solutions to the Riemann problem using the relative
entropy method. We show that up to a time-dependent translation of the shock,
the L^2 norm of a perturbed solution relative to the shock wave is bounded
above by the L^2 norm of the initial perturbation.Comment: 17 page