research

L^2 stability estimates for shock solutions of scalar conservation laws using the relative entropy method

Abstract

We consider scalar nonviscous conservation laws with strictly convex flux in one spatial dimension, and we investigate the behavior of bounded L^2 perturbations of shock wave solutions to the Riemann problem using the relative entropy method. We show that up to a time-dependent translation of the shock, the L^2 norm of a perturbed solution relative to the shock wave is bounded above by the L^2 norm of the initial perturbation.Comment: 17 page

    Similar works

    Full text

    thumbnail-image

    Available Versions