45 research outputs found

    Multiplex-GAM: genome-wide identification of chromatin contacts yields insights overlooked by Hi-C

    Get PDF
    Technology for measuring 3D genome topology is increasingly important for studying gene regulation, for genome assembly and for mapping of genome rearrangements. Hi-C and other ligation-based methods have become routine but have specific biases. Here, we develop multiplex-GAM, a faster and more affordable version of genome architecture mapping (GAM), a ligation-free technique that maps chromatin contacts genome-wide. We perform a detailed comparison of multiplex-GAM and Hi-C using mouse embryonic stem cells. When examining the strongest contacts detected by either method, we find that only one-third of these are shared. The strongest contacts specifically found in GAM often involve ‘active’ regions, including many transcribed genes and super-enhancers, whereas in Hi-C they more often contain ‘inactive’ regions. Our work shows that active genomic regions are involved in extensive complex contacts that are currently underestimated in ligation-based approaches, and highlights the need for orthogonal advances in genome-wide contact mapping technologies

    Origins of the Ambient Solar Wind: Implications for Space Weather

    Full text link
    The Sun's outer atmosphere is heated to temperatures of millions of degrees, and solar plasma flows out into interplanetary space at supersonic speeds. This paper reviews our current understanding of these interrelated problems: coronal heating and the acceleration of the ambient solar wind. We also discuss where the community stands in its ability to forecast how variations in the solar wind (i.e., fast and slow wind streams) impact the Earth. Although the last few decades have seen significant progress in observations and modeling, we still do not have a complete understanding of the relevant physical processes, nor do we have a quantitatively precise census of which coronal structures contribute to specific types of solar wind. Fast streams are known to be connected to the central regions of large coronal holes. Slow streams, however, appear to come from a wide range of sources, including streamers, pseudostreamers, coronal loops, active regions, and coronal hole boundaries. Complicating our understanding even more is the fact that processes such as turbulence, stream-stream interactions, and Coulomb collisions can make it difficult to unambiguously map a parcel measured at 1 AU back down to its coronal source. We also review recent progress -- in theoretical modeling, observational data analysis, and forecasting techniques that sit at the interface between data and theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue connected with a 2016 ISSI workshop on "The Scientific Foundations of Space Weather." 44 pages, 9 figure

    Genome architecture mapping detects transcriptionally active, multiway chromatin contacts

    No full text
    Genome architecture mapping (GAM) enables understanding of 3D genome structure in the nucleus. We directly compared multiplex-GAM and Hi-C data and found that local chromatin interactions were generally detected by both methods, but active genomic regions rich in enhancers that established higher-order contacts were preferentially detected by GAM

    Evaluation of simulated transpiration from maize plants on lysimeters.

    No full text
    In central Europe expected climate change will lead to strongly changing regional water availability and will affect future crop production systems and yields. To adapt these production systems and estimate the irrigation necessity for yield optimization—today and in the future—crop water demand as a function of its environment and development stage must be understood. Crop models are often applied to simulate water demands, but the accuracy of the simulations and the underlying mechanisms remain unclear. We therefore grew maize (Zea mays L.) in field lysimeters in 2013 and tested the ability of six model configurations (two crop models CERES (Crop Environment Resource Synthesis) and SPASS (Soil–Plant–Atmosphere System Simulation) combined with three evapotranspiration models) to simulate measured sap flow and components of the water balance. Sap flow measurements (i.e., heat ratio method [HRM]) determined transpiration. All models simulated the measured diurnal cycles of sap flow rates. Higher simulated leaf area indices by the CERES model runs caused an overestimation of transpiration in the beginning of the measurement period. The models overestimated daily actual evapotranspiration when water input was high due to an overestimation of actual evaporation and transpiration resulting from high water contents at the top soil layers. All models simulated the occurrence of measured percolation peaks, but only partly captured their intensities. Soil water contents in the 50- and 80-cm depths and the daily water content change of the whole lysimeter were well simulated by the models. Deviations between models and measurements might have been caused by the so-called pot effect and by drought stress influencing the root distribution in the lysimeter

    Decontamination of the digestive tract and oropharynx in ICU patients.

    Get PDF
    Contains fulltext : 79996.pdf (publisher's version ) (Open Access)BACKGROUND: Selective digestive tract decontamination (SDD) and selective oropharyngeal decontamination (SOD) are infection-prevention measures used in the treatment of some patients in intensive care, but reported effects on patient outcome are conflicting. METHODS: We evaluated the effectiveness of SDD and SOD in a crossover study using cluster randomization in 13 intensive care units (ICUs), all in The Netherlands. Patients with an expected duration of intubation of more than 48 hours or an expected ICU stay of more than 72 hours were eligible. In each ICU, three regimens (SDD, SOD, and standard care) were applied in random order over the course of 6 months. Mortality at day 28 was the primary end point. SDD consisted of 4 days of intravenous cefotaxime and topical application of tobramycin, colistin, and amphotericin B in the oropharynx and stomach. SOD consisted of oropharyngeal application only of the same antibiotics. Monthly point-prevalence studies were performed to analyze antibiotic resistance. RESULTS: A total of 5939 patients were enrolled in the study, with 1990 assigned to standard care, 1904 to SOD, and 2045 to SDD; crude mortality in the groups at day 28 was 27.5%, 26.6%, and 26.9%, respectively. In a random-effects logistic-regression model with age, sex, Acute Physiology and Chronic Health Evaluation (APACHE II) score, intubation status, and medical specialty used as covariates, odds ratios for death at day 28 in the SOD and SDD groups, as compared with the standard-care group, were 0.86 (95% confidence interval [CI], 0.74 to 0.99) and 0.83 (95% CI, 0.72 to 0.97), respectively. CONCLUSIONS: In an ICU population in which the mortality rate associated with standard care was 27.5% at day 28, the rate was reduced by an estimated 3.5 percentage points with SDD and by 2.9 percentage points with SOD. (Controlled Clinical Trials number, ISRCTN35176830.
    corecore