27 research outputs found

    The Jatropha Biofuels Sector in Tanzania 2005-9: Evolution Towards Sustainability?

    Get PDF
    Biofuel production has recently attracted a great deal of attention. Some anticipate substantial social and environmental benefits, while at the same time expecting sound profitability for investors. Others are more doubtful, envisaging large trade-offs between the pursuit of social, environmental and economic objectives, particularly in poor countries in the tropics. The paper explores these issues in Tanzania, which is a forerunner in Africa in the cultivation of a bio-oil shrub called Jatropha curcas L. We trace how isolated Jatropha biofuel experiments developed since their inception in early 2005 towards a fully fledged sectoral production and innovation system; and investigate to what extent that system has been capable of developing ànd maintaining sustainable practices and producing sustainable outcomes. The application of evolutionary economic theory allows us to view the development processes in the sector as a result of evolutionary variation and selection on the one hand, and revolutionary contestation between different coalitions of stakeholders on the other. Both these processes constitute significant engines of change in the sector. While variation and selection is driven predominantly by localised learning, the conflict-driven dynamics are highly globalised. The sector is found to have moved some way towards a full sectoral innovation and production system, but it is impossible to predict whether a viable sector with a strong “triple bottom line” orientation will ultimate emerge, since many issues surrounding the social, environmental and financial sustainability still remain unresolved.biofuels, evolutionary theory, innovation systems, sustainability, stakeholder conflict, learning, Tanzania.

    Observation of a controllable PI-junction in a 3-terminal Josephson device

    Full text link
    Recently Baselmans et al. [Nature, 397, 43 (1999)] showed that the direction of the supercurrent in a superconductor/normal/superconductor Josephson junction can be reversed by applying, perpendicularly to the supercurrent, a sufficiently large control current between two normal reservoirs. The novel behavior of their 4-terminal device (called a controllable PI-junction) arises from the nonequilibrium electron energy distribution established in the normal wire between the two superconductors. We have observed a similar supercurrent reversal in a 3-terminal device, where the control current passes from a single normal reservoir into the two superconductors. We show theoretically that this behavior, although intuitively less obvious, arises from the same nonequilibrium physics present in the 4-terminal device. Moreover, we argue that the amplitude of the PI-state critical current should be at least as large in the 3-terminal device as in a comparable 4-terminal device.Comment: 4 pages, 4 figures, to appear in Physical Review B Rapid Communication

    The Baltimore and Utrecht models for cluster dissolution

    Get PDF
    The analysis of the age distributions of star cluster samples of different galaxies has resulted in two very different empirical models for the dissolution of star clusters: the Baltimore model and the Utrecht model. I describe these two models and their differences. The Baltimore model implies that the dissolution of star clusters is mass independent and that about 90% of the clusters are destroyed each age dex, up to an age of about a Gyr, after which point mass-dependent dissolution from two-body relaxation becomes the dominant mechanism. In the Utrecht model, cluster dissolution occurs in three stages: (i) mass-independent infant mortality due to the expulsion of gas up to about 10 Myr; (ii) a phase of slow dynamical evolution with strong evolutionary fading of the clusters lasting up to about a Gyr; and (iii) a phase dominated by mass dependent-dissolution, as predicted by dynamical models. I describe the cluster age distributions for mass-limited and magnitude-limited cluster samples for both models. I refrain from judging the correctness of these models.Comment: 3 pages, 1 figure, to appear in "Young Massive Star Clusters - Initial Conditions and Environment", 2008, Astrophysics and Space Science, Eds. E. Perez, R. de Grijs and R.M. Gonzalez Delgad

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2•72 (95% uncertainty interval [UI] 2•66–2•79) in 2000 to 2•31 (2•17–2•46) in 2019. Global annual livebirths increased from 134•5 million (131•5–137•8) in 2000 to a peak of 139•6 million (133•0–146•9) in 2016. Global livebirths then declined to 135•3 million (127•2–144•1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2•1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27•1% (95% UI 26•4–27•8) of global livebirths. Global life expectancy at birth increased from 67•2 years (95% UI 66•8–67•6) in 2000 to 73•5 years (72•8–74•3) in 2019. The total number of deaths increased from 50•7 million (49•5–51•9) in 2000 to 56•5 million (53•7–59•2) in 2019. Under-5 deaths declined from 9•6 million (9•1–10•3) in 2000 to 5•0 million (4•3–6•0) in 2019. Global population increased by 25•7%, from 6•2 billion (6•0–6•3) in 2000 to 7•7 billion (7•5–8•0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58•6 years (56•1–60•8) in 2000 to 63•5 years (60•8–66•1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019. Interpretation: Over the past 20 years, fertility rates have been dropping steadily and life expectancy has been increasing, with few exceptions. Much of this change follows historical patterns linking social and economic determinants, such as those captured by the GBD Socio-demographic Index, with demographic outcomes. More recently, several countries have experienced a combination of low fertility and stagnating improvement in mortality rates, pushing more populations into the late stages of the demographic transition. Tracking demographic change and the emergence of new patterns will be essential for global health monitoring. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global burden of 87 risk factors in 204 countries and territories, 1990�2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease. Methods: GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk�outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk�outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk�outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden. Findings: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95 uncertainty interval UI 9·51�12·1) deaths (19·2% 16·9�21·3 of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12�9·31) deaths (15·4% 14·6�16·2 of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253�350) DALYs (11·6% 10·3�13·1 of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0�9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10�24 years, alcohol use for those aged 25�49 years, and high systolic blood pressure for those aged 50�74 years and 75 years and older. Interpretation: Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    The Jatropha biofuels sector in Tanzania 2005-2009: Evolution towards sustainability?

    No full text
    Biofuel production has recently attracted much attention. Some anticipate substantial social and environmental benefits, while at the same time expecting sound profitability for investors. Others are doubtful, envisaging large trade-offs between the pursuit of social, environmental and economic objectives, particularly in poor countries in the tropics. The paper explores these issues in Tanzania, which has been an African forerunner in the cultivation of a bio-oil shrub called Jatropha curcas L. We trace how isolated Jatropha biofuel experiments developed since early 2005 towards a sectoral production and innovation system, and we investigate to what extent that system has been capable of developing and maintaining sustainable practices and producing sustainable outcomes. The application of evolutionary innovation theory allows us to view the developments in the sector as a result of evolutionary variation and selection on the one hand, and revolutionary contestation between different coalitions of stakeholders on the other. Both these processes constitute significant engines of change. While variation and selection are driven predominantly by localised technical and agronomic learning, the conflict-driven dynamics are highly globalised and occur primarily as a result of reflexive learning about problematic sustainability impacts. The sector is found to have moved some way towards a full sectoral innovation and production system, but it is impossible to predict whether a viable sector with a strong "triple bottom line" orientation will ultimate emerge, since many issues surrounding the social, environmental and financial sustainability still remain unresolved, especially relating to local and global governance.Biofuels Evolutionary theory Innovation systems Sustainability Stakeholder conflict Learning Tanzania

    Community energy storage: A responsible innovation towards a sustainable energy system?

    Get PDF
    The decreasing cost of energy storage and increasing demand for local flexibility are opening up new possibilities for energy storage deployment at the local level. Community energy storage (CES) is expected to contribute positively towards energy transition while accommodating the needs and expectations of citizens and local communities. Yet, the technological and societal challenges of integrating CES in the largely centralized present energy system demand for socio-technical innovation. In this article, we develop and discuss several configurations of CES. Applying system innovation and socio-technical transition frameworks and conceptualizing CES as a complex socio-technical system, different dynamics of CES in the energy systems such as coordination and interaction among actors and components of CES and the larger energy system is explored. The responsible research and innovation (RRI) framework can provide a new discourse in design and implementation of CES, facilitating the transition to a sustainable, reliable, inclusive and affordable future energy system
    corecore