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HIGHLIGHTS

® An overview of the state of the art in community energy storage (CES) is provided.

® CES is conceptualized and analyzed as complex socio-technical system.
® Responsibility in CES design and implementation is operationalized.
® CES is not only technical but also social innovation.

® The added-value of CES go beyond economic benefits to wider societal benefits.
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The decreasing cost of energy storage and increasing demand for local flexibility are opening up new possibilities
for energy storage deployment at the local level. Community energy storage (CES) is expected to contribute
positively towards energy transition while accommodating the needs and expectations of citizens and local
communities. Yet, the technological and societal challenges of integrating CES in the largely centralized present
energy system demand for socio-technical innovation. In this article, we develop and discuss several config-
urations of CES. Applying system innovation and socio-technical transition frameworks and conceptualizing CES

as a complex socio-technical system, different dynamics of CES in the energy systems such as coordination and
interaction among actors and components of CES and the larger energy system is explored. The responsible
research and innovation (RRI) framework can provide a new discourse in design and implementation of CES,
facilitating the transition to a sustainable, reliable, inclusive and affordable future energy system.

1. Introduction and scope

The initial local energy systems developed by enterprises and others
around 1900 evolved into the present and still dominant complex,
fossil-fuel based, centralized and networked form due to various tech-
nological and societal developments, such as increasing demand,
economies of scale and resource complementaries [1,2]. However, the
present system is starting to lose some of its appeals, mainly due to
vulnerabilities of the energy infrastructures related to geo-politics, de-
pletion of fossil fuels and its climate change impacts as well as new
developments around distributed energy resources [3,4]. Accordingly,
the energy system is undergoing transformation, as can be seen in many
countries around the world, but especially in Germany with its spec-
tacular Energiewende [3,5-7].

The present energy system seems to be at a crossroad, going through
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rapid technological and institutional changes both at the central and the
local level [8]. The energy landscape is changing from dominant ver-
tical integration of centralized generation, transmission and distribu-
tion systems towards a combination of top-down and bottom-up sys-
tems. Although the centralized systems will have important role for
decades to come, there appears to be a transition towards a low-carbon,
co-operative and decentralized system, in both developed and devel-
oping countries [9]. The ongoing energy system transformation and
energy transition is partly steered by and asks for a higher engagement
of citizens and local communities [10].

One of main problems concerning the transformation towards a low-
carbon system is the mismatch between supply and demand, which is
expected to increase due to higher intermittent generation through
distributed energy resources (DERs) such as sun and wind [8]. This
requires serious adaptations of the energy systems, including new types
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of balancing and energy storage services [11-13].

So, two of the main challenges of the future energy system are to
deal with new approaches towards balancing. i.e. with energy storage,
and with engagement and involvement of local communities. One of the
solution that addresses both of these challenges is community energy
storage systems which are getting increased attention as potential
sources of innovation for sustainable energy transition [14,15] How-
ever, it is not clear how the CES systems be developed and what can be
its role in the transition of the energy system.

Similar to community energy, CES is also often treated as technical
task, driven by economic incentives [16-18]. Social and behavioral
aspects are not given much attention in the current literature [19,20]
and institutional aspects are also largely being neglected [8,21,22]. For
successful CES, it is important to satisfy the needs and objectives of
local energy communities. Moreover, technological advancements and
financial viability of DERs, and requirements to aggregate smaller as-
sets make sense of community engagement. CES technologies have
potential to shape future society and societal needs in terms of energy
which in turn will influence their technical innovation and develop-
ment. For example, CES can enable local community to be autarkic and
the energy storage technologies should be accordingly adjusted to meet
these new societal needs. The problems and externalities in the present
centralized energy systems is fostering innovative and responsible ways
to produce, transport and store energy with the engagement of the local
communities [23-25].

Accordingly, the energy system transformation is starting to provide
new roles and responsibilities for local communities as prosumers, and
prosumagers [23-25]. These roles refers to local communities and
households producing and consuming local energy, as well as produ-
cing, consuming and storing local energy, respectively [26]. As evident
from the increasing number of local energy initiatives, users and citi-
zens can play increasingly important and even essential roles in the
transformation and related innovation processes [27-30]. When local
energy communities adopt and use energy storage, new user-inspired
innovations are possible [29,30]. Such social innovation can be on the
governance and operation of the energy storage system. Sometimes,
local communities can give important feedback to the technology pro-
viders regarding the further technological improvement and sustain-
ability of the energy storage system leading to the higher acceptance
and further technical innovation. In this way, the technological ar-
ticulation and innovation goes on through the use of technologies in the
community.

The use of CES can locally help energy system transformation in
several ways such as decoupling energy demand and supply, providing
different energy services, integrating the heat and electricity system for
higher flexibility as well as accommodating the needs and expectations
of citizens and local communities [31,32]. Accordingly, CES can drive
the energy system transformation in the form of bottom-up initiatives
[33]. In this process, there are opportunities and challenges for the local
communities in re-organization and transformation towards a more
sustainable and co-operative energy system. New local energy organi-
zations, technologies, business models, partnerships and customer en-
gagement programs can emerge at the changing energy landscape,
further driving the energy system transformation. This transformation
might result not only in socio-technological changes at the local energy
system but also in fundamental shifts in the way the energy system as a
whole is being organized [8].

CES might provide new options and opportunities to empower and
engage local communities, as well as to foster socio-technological in-
novations. A careful alignment of technical and social aspects of the
new energy storage technologies will be required. CES might need new
enabling institutional environments for effective contribution towards
energy system transformation. So, CES may lead to both system and
community level dynamics. System level dynamics refers to changing
roles and responsibilities of energy system actors, energy system in-
tegration including different sectors, new market design, and business
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models. Community level dynamics refers to new roles for local com-
munities in ownership, governance as well as local energy markets in
the form of peer to peer energy sharing.

This also means that besides demands concerning energy security,
affordability, safety and soundness, other requirements and values
should be taken into account, in particular with respect to sustainability
and environment as well as coordination of activities and community
involvement. Particularly, the sustainability of energy storage tech-
nologies and distributed energy resources is important. From a re-
sponsible research and innovation (RRI) perspective, energy system
actors and local communities should collaborate to share responsibility,
to become mutually responsive and to anticipate future developments
to guarantee socially and technologically acceptable transformation
towards an inclusive and sustainable energy system [34-36].

There are still many unanswered questions, however. What do we
mean with energy storage at the local level, how many community
energy initiatives are involved in CES, how can CES be shaped and
organized, what are the contribution of CES in the energy transition,
what are the conditions for the emergence of CES, and how can RRI be
operationalized in CES?

The aim of this article is to shed light on these questions.
Accordingly, the focus is not on the comparative study of CES with
other distributed or utility scale application of energy storage but on the
role of local communities in shaping and enacting CES. It reviews and
assesses CES systems, and their different possible configurations and
dynamics. To understand and analyze these systems, we will make use
of the theoretical framework of system innovation, socio-technical
transition and responsible research and innovation [37-41]. The rest of
the article is organized as follows. First of all, in Section 2, after de-
scribing the role of storage and communities, CES is contextualized in
wider energy system. In Section 3, CES is analyzed through system
innovation and socio-technical transition perspectives and con-
ceptualized as a complex socio-technical system. In Section 4, different
aspects of responsibly linking CES with present energy system are
outlined. In addition we will list some conditions for further develop-
ment of CES. Finally, Section 5 presents and discusses our conclusions.

2. Positioning community energy storage
2.1. Need for decentralized, flexible and balanced energy system

Thanks to co-operation of different actors as well as favorable po-
licies and regulation, DERs are being developed and embedded rapidly
and widely. Accordingly, the transforming energy system also has to be
more diverse and flexible to cope with increasing temporal fluctuations
of demand and supply. The fluctuations in supply is growing due to
increasing penetration of intermittent DERs such as solar and wind. The
energy demand as well as its fluctuations are expected to rise despite
the improvement in energy efficiency due to increasing electrification
of the different sectors such as heating and transport in the developed
countries as well as improving energy access and socio-economic con-
ditions in the developing countries [42,43]. In addition to the tradi-
tional ways of harnessing the flexibility of supply through spin reserves,
new approaches for decentralized demand and supply side flexibility is
required at the local level to ensure effective system balance, to avoid
local congestion and to defer the grid reinforcement.

Fig. 1 presents the five key ways such flexibility could be harnessed
in the present energy system namely supply side flexibility, demand
side flexibility, energy storage, energy conversion as well as inter-
connection and grid reinforcement [31,44]. Supply side flexibility can
be harnessed through ramping up and down of traditional spin reserves
and curtailment of renewables [45,46]. Demand side flexibility can be
harnessed through demand side management and demand response and
requires tremendous amount of consumer engagement [21,47]. Energy
storage in the form of electricity and heat can minimize supply and
demand mismatch [48-50]. Energy conversion into other forms such as
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Fig. 1. Five key blocks of the flexible energy system.

power to gas also helps to ensure flexibility in the energy system
[25,26]. Grid interconnection and reinforcement absorbs supply and
demand mismatch over wide geographic regions with the aid of na-
tional, regional, international and super grid [31]. The flexibility of
future energy system depends on integrated and synergized operation
of these key options.

Energy storage is one of the key blocks for the flexible energy
system and it can enable integrated and synergized operation of these
several flexibility options as well as different sectors such as heat,
electricity and transport [51]. There are many different types of energy
storage technologies being used and developed which can be classified
based on materials used, form of energy stored, their functions, re-
sponse times and storage durations. Broadly, energy storage technolo-
gies can be categorized into mechanical, electrochemical, electrical,
thermochemical, chemical and thermal energy storage [22,52-55].
According to the United States Department of Energy, Global Energy
Storage database, pumped-hydro is the most deployed stationary en-
ergy storage technology worldwide followed by electrochemical and
thermal energy storage, as summarized in Table 1 [53].

Lithium-ion batteries are the fastest developing energy storage
technologies, thanks to its fast pace of development for electric ve-
hicles, as well as residential and utility scale applications [51,56].
Electric vehicles batteries can be used for both transport as well as
stationary storage purposes subjected to suitable business model and
consumer acceptance. In practice, there are some distinction between
stationary and mobility oriented energy storage technologies, as bat-
teries are systems rather than just the battery packs. In fact, the bat-
teries used in the electric vehicles are still suitable for a second life in
the stationary energy storage application such as residential and CES
systems [57]. This second reuse refers to the battery packs but a dif-
ferent balance of system components might need to be designed as

Table 1
Global status of energy storage deployment [53].

Technology Rated power (GW)
Pumped hydro 185.2
Electro-chemical 4.7

Thermal 4.03
Electro-mechanical 2.65

Hydrogen 0.022
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further discussed in Section 4.1.

Several scholars provide review and study on energy storage tech-
nologies and its applications [22,52,54,58-62]. Gallo et al. (2018),
review energy storage technologies in the context of energy transition
[55]. Aneke and Wang provide overview of energy storage technologies
with the focus on real-life application [60]. Luo et al. provide an
overview of the electric energy storage applications and their potential
application in power system operation [52]. Hadjipaschalis et al., Chen
et al. and Diaz-Gonzalez et al. also perform a comprehensive review on
different energy storage technologies [63-65]. Koohi-Kamali et al.
study the emergence of energy storage technologies for the smart en-
ergy systems [66]. A review of stationary energy storage technologies
for wind power application is provided in Diaz-Gonzélez et al. [65].
Similarly, Parra et al. [67] compare lead-acid and li-ion energy storage
application for time shifting of energy from solar photovoltaic system.
Lund et al. provide an overview of different energy storage applications
for the flexibility provision [31]. Kousksou et al. provide a review of
different applications and challenges of energy storage in general [16].

It is not well known yet, if energy storage will have similar dy-
namics as renewable energy and which policies and regulations are
adequate, but initial studies show that energy storage has similar
learning curves and cost reduction as solar photovoltaics and wind
[17,51]. According to Gallo et al. (2018), most important barriers for
energy storage deployments are related to economic feasibility and
regulatory environment [55]. Kyriakopoulos and Arabatzis [54] review
energy policies, regulatory regimes and technology innovation required
for electrical energy storage systems. Whittingham et al. highlights
limitation of electrical energy storage such as cost, energy performance
requirements and preference for environment friendly materials [18].
The authors highlight necessity for major advances in naturally abun-
dant new materials, cathode materials of higher storage capacity, safer
and low cost anode and stable electrolytes [18]. Liu argues that al-
though material science and material chemistry play a key role, energy
storage is also a system problem involving many issues such as energy
system integration and actors engagement [19].

The cost of energy storage tends to decrease. Increasing demand for
local flexibility, to avoid local congestion and to defer grid reinforce-
ment, is opening up new possibilities for energy storage systems de-
ployment at the local level [12]. The need for local energy storage is
expected to grow in the future in line with increasing DERs penetration,
and to meet increasing demand for flexibility as well as self-sufficiency
[51]. This is also evident by the large number of local demonstration
projects on energy storage being implemented worldwide
[20,53,68,69]. For example, there are more than 80,000 residential
energy storage system in Germany, and every second newly installed
residential PV system is combined with an energy storage [70].

The centralized design and regulation of the energy system present
challenges for the implementation of CES. On the one hand, CES has to
meet different expectations and objectives of local energy communities
such as local balancing, energy costs reduction, energy security, in-
dependence as well as social cohesion and community engagement
[71-73]. On the other hand, the energy systems actors such as system
operators and aggregators could also have different expectations from
the CES such as peak shaving and ancillary services [37,58,74]. For
example, households want low-cost local energy from CES while ag-
gregators seek to maximize the flexibility value of CES in various en-
ergy markets [42]. CES needs to align these often conflicting expecta-
tions in order to contribute towards energy system transformation in an
acceptable way for all stakeholders [38-40,74]. These conflicting in-
terests and expectations can be managed with the aid of methods such
as value-sensitive design and value case method, as further discussed in
Section 4.5 [34,41]. Recently, value-sensitive design is applied in the
design of solar and wind systems [75,76].
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2.2. Energy communities

The increasing involvement of citizens the energy production and
management can be seen in the rapid growth of local energy co-op-
eratives [23,24]. The diminished role of households and local com-
munities to that of passive consumers in the centralized energy systems
is changing to active prosumers. With these developments, the future
energy system is going to be combination of centralized and decen-
tralized energy system working in synergy with each other.

Cities and communities around the globe are starting to drive the
transformation of the energy system [11]. When consumers have more
control and options, they tend to self-organize and co-operate to initiate
a community energy system [77-85]. In some cases, the need to adjust
local energy system seems to be more urgent than the regional and
national level. Some prominent examples in this regard are the recent
growth of local energy co-operatives in Germany and ‘van gas los’
discussions in the Netherlands [86,87]. In the recent years, more and
more distributed energy resources (DERs) have been installed at the
household and the community level [7,33]. Organizing local energy
collectively often makes sense for economic and logistic reasons as well
as for effective resource mobilization [81]. With further facilitation
from the smart grid development and the drive for energy in-
dependence, more local communities are expected to engage them-
selves to match their supply and demand locally.

Table 2 provides an overview of local energy initiatives wide-spread
in the present European energy landscape. In Europe, there are more
than 2800 local energy co-operatives of which around 1000 are in
Germany and around 400 are in the Netherlands [7,25,88]. Increasing
numbers of local communities are engaging themselves in generating,
conserving, sharing, consuming and exporting energy locally thanks to
the recent developments such as the implementation of suitable po-
licies, cost reduction of renewables, the emergence of information and
communication technologies (ICTs) and internet of things (IoT) as well
as environmental awareness and community objectives such as grid
independence [89,90]. Local communities are well-placed to identify
local energy needs, take proper initiatives and bring people together to
achieve common goals such as self-sufficiency, resiliency, and au-
tonomy. Technical innovation in distributed renewable energy tech-
nologies and social innovation in its governance are leading to the surge
of local energy collectives that generate and manage energy in a de-
centralized, democratic and distributed way [11].

The local energy initiatives are emerging with varying numbers,
success rate and strategies in Europe [91]. The diversity in the success
of these community initiatives could be partially attributed to pre-
vailing structural, strategic and biophysical conditions [81,91]. For
example, in Germany, the motivation so far has mainly been the mix-
ture of environmental awareness and economic incentives facilitated by
enabling policy frameworks. With the recent changes in the market
conditions and support incentives in terms of feed-in tariffs co-opera-
tives now have to compete with the centralized generation with
economies of scale, highlighting the obsolescence of current business
models [23]. In this context, self-consumption, local balancing and CES
become increasingly important.

These existing local energy initiatives may provide fruitful ground
for the development and implementation of CES. For example, the en-
ergy community of Feldheim, Germany has recently added CES in their

Table 2
Emergence of local energy initiatives in Europe.
Country Number of local energy Number of References
initiatives members
Europe 2800 - [25]
Germany 1000 180,000 [23]
The Netherlands 392 65,000 [24]
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mix of technologies [20]. CES stores the excess local heat and electricity
that cannot be consumed locally when produced and make it available
later when it is needed. The stored energy can be used for different
purposes depending on the local conditions such as resource availability
and consumption patterns. In this way, CES can enable effective
matching of local renewable energy supply and local energy demand. It
not only allows higher penetration of local generation such as renew-
ables, but also facilitates energy sharing and local self-consumption of
locally generated renewables. At the same time, CES can provide dif-
ferent energy services to the neighboring communities as well as the
larger energy systems. For example, it can provide ancillary and bal-
ancing services to the larger energy systems. In other words, CES can
enhance synergies between local energy initiatives and the larger en-
ergy system.

2.3. Community energy storage: Concepts, definitions and scope

There are multiple but not precise definitions of CES in practice and
the definition varies a lot among the scholars [48,67,92-97]. Parra
et al. refers it as energy storage located at the consumption level with
several applications and positive impacts to end users and network
operator [95]. Roberts and Sandberg suggests CES as an intermediate
solution between residential energy storage and utility-scale distributed
energy storage for balancing local intermittent renewable supply and
dynamic demands such as heat pumps and electric vehicles [94]. In
essence, both these definitions are limited to the location of energy
storage and do not provide attention to community engagement, virtual
communities, ownership as well as benefits. van der Stelt refers it as
energy storage systems located at the consumption level with the ability
to perform multiple applications to manage demand and supply with a
positive impacts to both consumers and the system operators [92]. This
definition brings along interesting dynamics to CES as energy systems
actors such as system operators as well as program responsible parties
who are not the owner might also get the benefits. Barbour et al. define
it as energy storage introduced for community that can be shared be-
tween members who are typically but not exclusively located in the
local community, opening up the possibilities for virtual CES [48].

In this review article, CES is defined as an energy storage system with
community ownership and governance for generating collective socio-eco-
nomic benefits such as higher penetration and self-consumption of renew-
ables, reduced dependence on fossil fuels, reduced energy bills, revenue
generation through multiple energy services as well as higher social cohesion
and local economy. This definition excludes purely residential and utility
scale application and theoretically, CES lies between these two appli-
cations.

2.4. Studies on energy storage and communities

Recently, energy storage and community energy receive increasing
attention in academia [48,58,92]. Fig. 2 presents increasing trends of
research articles on the topics of energy storage, community energy as
well as residential and CES, as can be found in Scopus® database [98].
CES seems to get more attention than the residential energy storage.
This could be attributed to size, economy of scale of CES as well as its
potential applications in the energy systems.

Many authors argue that CES will have an important role in creating
a more efficient energy system [31,66]. Barbour et al. concluded that
CES is more effective option than the residential energy storage [48].
Similarly, Parra et al. analyzed the performance and economic benefits
of CES for time-shifting of solar photovoltaic energy [67]. The com-
munity application is demonstrated to reduce the life-cycle cost of en-
ergy storage as high as 37% over the individual household application
[671.

Some authors, however, report that CES are not yet feasible [92].
For example, Van der Stelt et al. compared techno-economic feasibility
of residential and CES scenarios using optimization and dynamic
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pricing and concluded both residential and CES to be economically
infeasible under current investment costs [92]. Nevertheless, both
configurations of energy storage led to increase in self-consumption of
PV and decrease in annual energy costs by 30%, approximately [92].
Nevertheless, van Melven et al. reports economic and social viability of
CES when the multiple-values such as local balancing, peak shaving,
grid services and avoided costs of grid-reinforcement are stacked [99].

Some other scholars focus on control, energy management and
market aspects of CES [93,97,100]. Arghandeh et al. presents control
strategy to maximize the revenue from CES considering crucial un-
certainties in price and load forecasts as well as transformer loading,
reserve capacity and feeder losses [93]. The authors presented a market
based optimization algorithm to realize additional benefits of CES in the
competitive energy market [93]. Sardi et al. proposed strategy for op-
timal allocation of CES using all possible costs and benefits [100]. The
costs considered are capital costs, operation and maintenance costs as
well as replacement costs whereas the benefits considered are arbitrage,
peak support, loss reduction, grid re-enforcement deferrals, emission
reduction as well as grid-support services [100]. Onar et al. models the
control and application of CES based re-purposed electric vehicles
batteries and highlights its potential application in grid support and
ancillary services [97].

Although Parra et al. reviews the challenges and perspectives on
CES with emphasis on techno-economic, social and environmental as-
sessment as well as end-use application [58], most of the research on
CES so far deals with techno-economic aspects [58,67,92,97,101].
There is limited attention on societal, institutional and environmental
aspects. The attention on these aspects can bring along new opportu-
nities for CES such as citizen participation and community engagement,
sustainability as well as awareness on energy consumption and en-
vironmental aspects. Gaede and Rowlands identifies political and socio-
technical factors to enhance transformation capacity of energy storage
and conclude that its transformative potential depends on complex
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interactions between actors and institutional factors [102]. Building
upon existing reviews and research on CES, this review focuses on how
energy storage is being shaped and enacted in local communities. Based
on current developments in the energy landscape, several configura-
tions of CES are identified and discussed. Different dynamics of CES in
the energy systems as well as within the local community such as co-
ordination and interaction among actors and components of CES will be
explored. This review also benefits from the application of responsible
research and innovation (RRI) framework in design, implementation
and integration of CES.

2.5. Categorization, configuration and cases of community energy storage

Several electrical and thermal energy storage technologies have
potential application in the local energy communities. For electrical
energy storage at community level, electrochemical energy storage
technologies such as lithium-ion, sea-salt and lead-acid batteries as well
as flow batteries are suitable [49,58,59,103-105]. Despite high capital
cost and low efficiency, hydrogen energy storage can play important
role in CES [106,107]. Not all the electrical energy storage technologies
outlined earlier are suitable for community level application. For ex-
ample, pumped hydro and compressed air are often not suitable for
application at the community level due to their size as well as geo-
graphic requirements [51,58]. Technologies such as super-capacitors
and flywheels are not capable of meeting the specific energy and power
requirement for the community level applications [51,63].

For the thermal application at the community level, sensible and
latent heat storage technologies are suitable for daily and seasonal
storage [108-114]. The few examples of sensible heat storage medium
are water, aquifer, pit, rocks and bricks [58,111]. The aquifer based
thermal energy storage technologies are common in the Netherlands,
whereas as pit thermal storage technologies are common in Denmark
[58]. Latent thermal energy storage consists of phase change materials
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and are used for more compact storage applications [58,112].

The technical and social innovation in electric and thermal storage
system can enable its new application at the local level. Community
values such as sustainability, safety and energy security are increasingly
being embedded in the design of CES as evident in new energy storage
technologies such as DrTen® and Ecovat® [105,108]. Local energy
communities are also the location where electric and thermal energy
storage can be integrated providing multiple benefits such as higher
flexibility, reliability as well as energy security [31,58].

In the rest of this article, the focus is on electrical CES, although
most of the discussion will be valid for thermal energy storage as well.
CES are considered intermediate solution between residential and uti-
lity scale energy storage application [58,94]. The increasing penetra-
tion of intermitted renewables as well as decreasing costs of DERs has
led to a broader implementation of CES of various size and scales [67].
With the digitalization of energy system, such as through advancement
in information and communication technologies and energy manage-
ment systems, residential energy storage, however, could also be shared
and used for CES applications [115]. Moreover, the community can be
distinguished between localized and virtual community [116,117].
Feldheim energy community provides a typical example for the loca-
lized CES whereas SonnenCommunity® serves as an example for the
virtual CES [20,115]. As presented in Table 3, shared residential energy
storage, shared local energy storage and shared virtual energy storage
are three promising CES configuration [92]. Each configuration pre-
sents different socio-technical dynamics which will be discussed further
in Section 3.

CES is being deployed worldwide, Germany, US, Japan, China and
Korea being the market leaders [51,70]. Different countries have dif-
ferent social such as governance and legal as well as physical conditions
for the development and implementation of CES. Existing and new local
energy initiatives offer a strong platform for the deployment of the
thermal and electrical energy storage systems [20]. Yet, very few local
energy initiatives are engaged with energy storage, as CES is still in its
infancy. There are still very few operational and demonstration projects
being implemented worldwide in different forms and applications
[118]. Some of these initiatives are local whereas others are virtual. In
this Section, examples of initial projects on different CES configuration
are provided.

2.5.1. Shared residential energy storage

There are very few cases of shared residential energy storage in
practice and several pilot projects are being implemented worldwide to
demonstrate this configuration. However, it is going to speed up with
the digitalization of energy sector through advancement in information
and communication technologies, micro-grid technologies, energy
management platforms and internet of things [119]. For example, in a
47 household energy community in Heeten, The Netherlands, 24
households are being equipped with 5 kWh residential energy storage
[68]. The households can optimally share energy storage for the col-
lective benefits such as peak shaving, higher self-consumption of local
generation and lower energy costs. One of the several pilots being

Table 3
Different configurations of community energy storage system.
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implement in US is the Sacramento Municipal Utility’s Anatolia III solar
smart home community home project consisting of 15 residential bat-
teries of 7.7 KWh each [120]. However, this pilot is utility owned and
controlled and local communities have no roles and responsibilities
except being able to monitor their daily electricity consumption as well
as export. In Bangladesh, Solshare® interconnects solar home systems
(SHSs) and energy storage through peer to peer energy trading plat-
forms [121].

Solshare® has partnered with Gramin Shakti, a micro-credit en-
terprise for financing of solar panels and energy storage. It utilizes
mobile payment systems which is also a prime example of south-south
technology transfer which was first launched in Kenya and Tanzania
[122]. The bottom-up swarm electrification and energy storage ap-
proach allows each villagers to become energy entrepreneurs and take
control of their energy system. Solshare is the evidence of the under-
going energy transformation in developing countries and co-operation
among different actors towards decentralized, decarbonized, democra-
tized and digitalized energy systems. This innovation is seen as an
important steps and contribution towards providing universal access to
energy [123].

2.5.2. Shared local energy storage

Shared local energy storage refers to collective energy storage in a
localized community. Although utility scale application of bulk energy
storage is common, shared local energy storage are emerging in the
energy landscape. For example, since 2015, Feldheim energy commu-
nity owns 10 MWh CES.

Feldheim energy community is a pioneering example of self-suffi-
cient energy community [20]. It achieved its energy independence
through local generation, energy storage and even private energy net-
work. The energy system is gradually increased to the size of 81.1 MW,
Wind, 2.25 MW, Solar PV, 500 kW./ KW, biomass plant and 10 MWh
energy storage [20,82]. The energy community meets all its energy
demand locally and sells surplus generation to the national grid. In fact,
Feldheim energy community had to build its own parallel electricity
network, after the initial attempt to lease the network from the in-
cumbent utilities failed. Hence, it owns a community electricity and
heating network and is independent on demand side from the national
electricity network. This alternative arrangement led to one third lower
energy prices which is independently determined by the energy co-
operative irrespective of the retail prices at the centralized energy
system.

In 2015, the German wind turbine manufacturer, Enercon, and
German wind developer, Energgiequelle and Feldheim energy com-
munity jointly developed a 10 MWh energy storage for local balancing
and to stabilize the electricity network of German transmission system
operator 50 Hz [20]. In other words, this CES provides frequency reg-
ulation for the transmission system operator. The co-ordination and
interaction between energy systems actors and the energy community
led to this new business model and application. This case is a good
example for the potential role of local energy initiatives and energy
system actors to develop CES.

Storage type Descriptions

Shared residential energy storage

Network of residential energy storage of size up to 20 kWh installed behind the meter and EV batteries in consumer premises which can be

shared among the community members of a specific location via the local physical grid. Example: Gridflex Heeten [68]

Shared local energy storage

Energy storage of size tens to hundreds of kWh installed in front of the meter and behind the transformer in the local neighborhoods with

community ownership and governance as well as shared via the local physical grid. Example: Feldheim energy community [20]

Shared virtual energy storage

Network of decentralized stationary and mobility oriented energy storage installed at different locations with independent ownership and

governance which can be aggregated and virtually shared at national and international level via the main grid based on the market design
and regulation. Example: SonnenCommunity® [115]. The size of the individual energy storage units is identical to that of residential energy
storage or local energy storage. The range of virtual energy storage depends on the capability of the digital networking platform. For
example, in Germany, growing number of more than 10,000 end-users are associated with the SonnenCommunity®
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2.5.3. Shared virtual energy storage

Due to liberalization and restructuring of the energy sector, there
are number of virtual energy storage networks being developed
worldwide [115,124-127]. For example, in Germany there are already
few commercial practices in virtual energy storage such as Sonnen-
Community®, Lichtblick — Schwarmbatterie® and Nextkraftwerke®. Si-
milarly, Storenet project in Ireland and virtual power plant project in
Adelaide are demonstrating this CES configuration [124,125].

SonnenCommunity® is a growing network of above 10,000 end-
users in Germany who produce, store, use and share energy [115].
Independent of the established utilities and location, it is a community
of producers, consumers and energy storage owners who can supply
each other with self-generated as well as stored electricity. In this way,
SonnenCommunity® function itself as a utility. The surplus electricity
that cannot be consumed or stored at virtual community members’
premises is shared online among the members of the Sonnencommu-
nity® all over Germany and beyond. Distributed generation, energy
storage technologies and digital networking are the three basic building
blocks of the SonnenCommunity®. A robust, self-learning software
platforms connects the members of the Sonnencommunity® with each
other and ensures real-time optimal energy balance within the virtual
community network and minimizes the balance responsibility [128].
Similarly, The Lichtblick-Schwarmbatterie® are interconnected via the
smart platform Schwarmdirigent®, enabling energy sharing between
member consumers [126]. The locally produced energy can be stored
and consumed when there is need. The NextKraftwerke®, virtual power
plant, connects producers such as biomass, wind and solar power plants
as well as energy storage with the consumers [127]. It digitally ag-
gregates distributed units and the power and flexibility from these
networks is valorized in different energy markets. For example,
Nextkraftwerke® has total networked capacity of 4200 MW and can
even balance frequency fluctuations of the grid.

2.5.4. Initial projects in CES

Several pilot and commercial projects are being developed world-
wide in order to demonstrate the added value of the CES, Table 4
[20,69,129]. For example, in the Netherlands, distribution system op-
erators are installing CES in collaboration with local communities with
the aim of maximizing self-consumption of local generation as well as to
identify suitable conditions for operation of CES [69,129]. Recently,
bottom-up initiatives through local energy communities on energy
storage can also be seen in the Dutch energy landscape, such as Gridflex
Heeten [68]. In Feldheim, CES provides primary frequency regulation
for transmission system operator, as discussed earlier in this Section
[20]. Within the framework of sustainable community energy networks
(SCENe) project, a largest CES in the United Kinddom has been installed
with the aim of optimizing energy storage use for grid services as well
as self-consumption within local communities [130]. SonnenCommu-
nity® enabled by distributed generation, energy storage and digital
networking, is a virtual community of 10,000 members in Germany
which even functions as a shadow utility. SonnenCommunity® is

Applied Energy 231 (2018) 570-585

rapidly expanding to other countries such as Austria, Italy, The Neth-
erlands, Switzerland, United States as well as Australia.

2.6. Applications of CES

Based on techno-economic and energy system perspectives, CES can
have different applications for the local communities and the larger
energy system, as summarized in Table 5. These applications range
from local balancing to integration of variable renewables, grid support
and ancillary services. CES combined with demand side management
can lead to higher self-consumption of local generation and reduce grid
imbalance of supply and demand [92]. The added value of community
energy storage include improved operation of energy systems, reduced
network investments, reduced primary energy consumption, energy
security and reduced environmental impacts [16]. Often, these added
values needs to be stacked to have a viable business case for CES
[32,99]. New social, environmental and institutional added values
never envisioned before could emerge through interaction and co-or-
dination between actors in CES. For example, CES might lead to social
cohesion and community trust as well as enhance sustainability, re-
siliency and autonomy.

CES is gaining attention in the transitioning energy system. CES
technologies are gaining maturity thanks to rapid pace of electrification
of transport sector and decarbonization of the energy sector. The
changing energy landscape also favors the emergence of CES. Yet, de-
sign and implementation of CES is a social learning process. As pointed
out earlier, most of the research have limited focus on techno-economic
aspects such as energy system balancing, arbitrage and grid services.
The added value assessments also focus on techno-economic gains for
the traditional energy system actors. It is also important to understand
the social, environmental and institutional dynamics of introducing CES
in the energy system as well as added value to the local communities, as
discussed further with the aid of boarder frameworks in Section 3.

3. Understanding the dynamics of community energy storage
3.1. System innovation and socio-technical transitions frameworks

Given the focus on energy system transformation and energy tran-
sition, several socio-technical transition and innovation theories, in
particular the Technological Innovation Systems (TIS), Multi-level
Perspective (MLP) and Strategic Niche Management (SNM) frameworks
might help to better understand the interactions and dynamics of CES,
Table 6 [30,131-133]. Several scholars have successfully applied these
theories in community energy as well as sustainability transition re-
search, demonstrating their potential application for CES [132,134]. In
practice, the theories and methods that are applicable to community
energy systems in general are also applicable to CES and vice versa.
Often, CES forms the part of the wider community energy systems with
local generation and demand-side management. These theories are
heuristic and are continuously being evolved with ongoing research as

Table 4
Initial projects in community energy storage.
Location Size/number of households/configuration Year  Objective References
Rijsenhout, The Netherlands 128 kWh/35/shared local 2017 Maximizing self-consumption of local generation [129]
Etten-leur, The Netherlands 230 kWh/200/shared local 2012 To identify the conditions of reliable, affordable and [69]
sustainable energy supply through CES
Heeten, The Netherlands 120 kWh (24 households with 5 kWh each)/47 /shared 2017 To develop an innovative business case for a local energy [68]
residential market
Feldheim, Germany 10 MWh/10 MW/37/shared local 2015 Primary reserve for transmission network operator (50 Hz), [20]
local balancing
Trent Basin, United Kingdom 2.1 MWh/120 Households (greenfield)/ shared local 2018 Optimization related to grid services and community [130]
consumption
SonnenCommunity®, Germany  Virtual community of 10,000 members with 2 to 16 kWh 2013  Share self-produced and stored energy with other [153]

energy storage units / shared virtual

community members
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Table 5
Different applications of CES in local communities and larger energy system.
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Applications

Explanations

Local communities Higher self-consumption and integration of variable

distributed energy resources

Reduce mismatch between local supply and demand as well as to increase local renewables self-
consumption [96]. The impacts are local balancing, security of supply, reduced energy dependence

and lower emissions

Peak shaving

Peak shaving community energy demand or supply [96,177]. The impacts are reduced network

and energy costs, deferral or prevention of grid reinforcement

Economic incentives

The local communities can benefit from arbitrage, i.e. the price fluctuations in the energy markets

[178,179] or avoid peak prices, regulated costs, surcharges and taxes

Seasonal storage
Emergency services
Sustainability, self-governance and autonomy

Larger energy system  Energy and network services

Long term energy storage with reduced energy dependence on fossil fuels [151]

CES can provide energy for essential services during disaster or emergency

Self-governance and ownership of CES leading to sustainable and autarkic local energy system
Grid support, ancillary services, operating reserve flexibility provision and congestion

management [97]. For example, Feldheim energy community provides grid services to a
transmission system operator through its 10 MWh energy storage [20]

Network reinforcement deferral

Defer network investment due to local matching of supply and demand

well as practices and are not based on a single discipline but draw
concepts and insights from multiple disciplines and practices. More-
over, these theories appreciate non-linear nature of socio-technical in-
novation, rather than traditional linear technology-push model of in-
novation and give adequate importance to key elements such as actor
networks, institutions, social practices, businesses as well as socio-
economic and technological characteristics.

The TIS framework is traditionally used to study the emergence and
growth of new technological fields and industries [132]. It focuses on
understanding the dynamics of innovation based on the performance of
the surrounding technological system. The key structural elements of
TIS framework are actors, institutions, interactions and infrastructures.
Its key functions include knowledge development and diffusion, market
formation, goal formation, resource mobilization as well as en-
trepreneurial activities [135]. This approach monitors key structures
and functions to identify weakness and improve them. Some critiques of
TIS are limited attention to external structures, its delineation, not
enough coverage of geographical issues, its usefulness in analyzing
transition, marginal role of policy as well as normative issues and policy
recommendations [132]. Recently, some scholars discuss the prospects
of TIS approach in analysis of socio-technical transition [132].

The MLP framework includes a broader societal context than the TIS
framework and is widely being used to study socio-technical transitions

Table 6
Comparative analysis of TIS, MLP and SNM frameworks.

[136,137]. This framework recognizes the co-evolutionary develop-
ment of technologies, institutions as well as social and economic sys-
tems. According to MLP, socio-technical transition emerge through in-
teractions at three structural levels, namely socio-technical landscape
(macro), regime (meso) and technological niches (micro) [30,131].
Landscape level consists of macro-economic and political developments
as well as deep cultural patterns and it is changes in this level which
exerts pressure on socio-technical regime and technological niches,
stimulating further socio-technical transition. Regime level is made of
current practices and routines including dominant rules and technolo-
gies and often presents barrier to new technological and social in-
novation. The niche level is loosely structured and is less influenced by
market and regulatory structures, hence, providing favorable condi-
tions for experimentation and radical innovation as well as interaction
among the actors of socio-technical innovation.

MLP serves as an useful framework to study CES as it considers
interactions between niche innovations and existing regimes [138]. In
other words, it conceptualizes technological change as process of niche
innovation competing with incumbent socio-technical regimes
[131,139]. It helps to better understand socio-technical transitions,
emergence of innovation as well as shift of the incumbent regimes to-
wards sustainability [134]. It is also concerned with transformative
societal processes and focuses on prospects and dynamics of boarder

Frameworks

Key characteristics

Limitations

Relevance to CES

Technological innovation
systems (TIS)

Multi-level perspectives
(MLP)

Strategic niche
management (SNM)

Innovation occurs in the context of entire systems
consisting of actors, institutions, interactions and
infrastructures.

Focuses on dynamics, system functions and
prospects of a particular innovation and its
diffusion.

Socio-technical transition emerges through
interaction at landscape, regime and niche level.
Broader societal context than TIS as it recognizes
co-evolutionary development of technologies,
institutions, as well as socio-economic systems.
Focuses on dynamics of variety of innovation and
transition processes.

Focuses on niche level of MLP and highlights
importance of protected space and user engagement
in early stage of technology development.
Enables new technology pathways to penetrate
regime level.

Process oriented and gives importance to
demonstration, experiment and learning.

Technology is judged based on the
performance of TIS.

Cultural and demand aspects are
marginalized.

System functions are more
important than system changes and
dynamics.

Neglect smaller actors such as
grassroots initiatives, local
communities and citizens.
Overstates the stability of regime
and landscape level.

Neglects the role of geo-spatial
factors

Collaboration between niche and
regime actors is not sufficiently
considered.

Too much focus on internal niche
processes at expense of external
niche processes.

Most SNM experiments are local-
context specific and have not
scaled-up.

Relevant for the innovation in energy storage
technologies as well as understanding different system
actors and functions but limited attention on societal
aspects.

Innovation dynamics of CES depends on the performance
of community energy system in which it is embedded.

Considers interactions between different niche actors as
well as transformative societal processes.

Changes in landscape and regime can enable emergence
of CES.

Classification of CES as niche innovation does not help to
understand community level dynamics as well as
collaboration with other energy system actors.

CES can be steered by range of actors including citizens
and local communities.

Can generate learning about needs, business models,
operation as well as technology imperfections of CES and
strategies to overcome them.
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transition processes and varieties of innovation. Yet, there are several
critiques of MLP such as lack of agency, operationalization of regimes,
overstating the stability of regimes, neglecting the roles of geo-spatial
factors, bias towards bottom-up change models as well as socio-tech-
nical landscape as residual category [140,141].

The SNM framework suggests that sustainable innovation journey
can be facilitated by appropriately designed technological niches which
allow experimentation with the co-evolution of technology, user prac-
tices and regulatory structures [133]. SNM emerged partly from MLP
with policy, normative and governance oriented focus, therefore, pay
specific attention to the role of visions, development of actor networks
as well favorable conditions for niche innovations and strategies for up-
scaling niche innovations.

CES might be subjected to complex and manifold of influences
under changing energy landscape with multiplicity of technical, socio-
economic, environmental and institutional interactions with the energy
system [42,82]. They have to emerge in changing energy landscape
with rapid technological and institutional developments and consists of
several interacting systems of socio-technical innovation. In this con-
text, the collaboration between energy system actors and local com-
munities is important to ensure continuity of energy supply. It is not
clear yet whether CES will become mainstream in the energy system. As
many regime actors are now also engaged with energy storage, one
possible scenario is that they will take over CES. Yet, new energy po-
licies and regulations focuses on empowering citizens and giving them
more control on energy systems [10]. In such scenario, CES will be an
important building block of the future energy system.

3.2. Community energy storage: A complex socio-technical system

Building upon above mentioned system innovation and socio-tech-
nical transition frameworks, CES can be broadly aligned in the energy
system through three layers namely physical system, actor network and
external environment including wider socio-technical context such as
legislation and beyond, as illustrated in Fig. 3. There are complex and
non-linear interaction and dynamics among different layers, actors as
well as the technological components of CES [142]. The socio-technical
configurations of CES differ in different types introduced in Section 2.5,
namely shared residential, shared local and shared virtual CES. It de-
pends on the energy storage technologies, digital platforms, energy
management systems, actors and geographical scope as well as the
corresponding social, political, market and regulatory conditions [143].
The technologies invested and topologies chosen collectively by the
local communities as well as market and regulatory conditions are ex-
pected to determine the configuration of the CES. The availability of

External environment
Government, legislation, regulation, national
energy market, national grid, dominant
technologies, institutions, intermediaries

Fig. 3. Community energy storage as complex socio-technical system.
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numerous distributed technologies, different social preferences, dif-
ferent energy consumption patterns, policies, as well as the existing
institutions, make the design and implementation of CES rather com-
plex. Accordingly, there are different ways to engage and involve dif-
ferent actors and institutions in the different configurations of CES,
leading to interactions and dynamics in physical system, actor network
as well as external environment layers

3.2.1. Physical system

The physical system of CES consists of storage technologies, the
energy management systems as well as cloud services embedded with
the community energy system consisting of distributed energy re-
sources and physical networks. The physical system is likely to differ
among different CES configuration introduced in Section 2.5. For ex-
ample, the sizing and location of shared residential and shared local
configuration are limited by the grid capacity and often contributes
towards local energy balance and grid relief. The virtual shared CES
does not necessarily consider this as limitation as it is the responsibility
of distribution system operators to provide sufficient transport capacity
according to the energy regulation. Moreover, the first two configura-
tions are local whereas the third configuration is virtual and is depen-
dent on wider physical energy network and deregulated energy sector.

The interoperability between energy storage technologies and the
balance of the systems is crucial for the CES. In other words, the energy
storage technologies and balance of the systems such as charge con-
trollers, inverters and energy management systems needs to be com-
patible with each other. This demands for standardization as several
different technology developers are engaged in research and develop-
ment of the energy storage system components. Recently, more de-
centralized energy storage technologies and energy management sys-
tems have become affordable, further driving household and
community investment in energy storage [144]. Furthermore, the
technological configuration also needs to be adapted as the societal
needs regarding energy storage changes such as electrification of
transportation and heating as well as resiliency.

3.2.2. Actors network

The actors network of CES consists of different societal actors such
as households, communities, housing corporation, local and national
government as well different energy systems actors such as prosumers,
energy suppliers, energy co-operatives, aggregators, system operators,
energy service and technology providers, regulators as well as local and
energy market operators. Similar to physical system, the actors network
differ among the various configuration of CES introduced in Section
2.5. For example, for shared virtual energy storage, more actors from
larger energy systems such as transmission system operators and bal-
ance responsible parties are more relevant to ensure energy balance in
virtual communities than for shared residential and shared local con-
figuration of CES.

These actors perform different activities such as production, storage,
charging, discharging, balancing, trading and distribution and have
variety of interests and functionalities. For example, CES can be used
for local balancing through the physical network of community grid or
distribution system operators depending on the grid ownership. At the
same time, the surplus energy could be traded to the different energy
markets through the aggregators. Yet, the actors are inter-dependent in
the realization of their goals and different actors might have different
expectations from the CES. For instance, households want low-cost and
local energy at their disposal while aggregators seek to maximize the
value of flexibility in the various energy markets. It is important to
manage these conflicting interests and expectations. Moreover, the in-
teraction and co-ordination among societal and energy system actors is
important for the CES design and implementation.

3.2.3. External environment
CES is a decentralized and bottom-up initiative positioned in the
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socio-technical regime and landscape [131,133]. These socio-technical
innovation are influenced not only by the local conditions but also by
external environment consisting of different regulatory and market
conditions, dominant technologies and institutions. These systems are
governed by different national and regional energy policies which
needs to be adequately considered to ensure its economic and effective
operation. Different actors of CES and external environment interplay
to steer and transform the activities of CES. The CES activities are in-
fluenced by technical attributes of external environment such as
available technologies and grid capacity as well as attributes of com-
munity in which actors and actions are embedded and institutions
which guide and govern the actors behaviors. This leads to patterns of
interactions and outcomes which could cause different socio-technical
issues in different types of CES. For example, the ownership model of
the local grid as allowed by the energy regulation will affect strategic
operation of shared residential and shared local CES in maintaining
local energy storage. At the same time, if local grid is owned by the
local communities, virtual CES might not get access to this local grid.
Moreover, as political, social, economic and institutional structure are
different, CES implemented at different place and time will have dif-
ferent impacts and need further analysis.

To summarize, CES is unique decentralized solution in the sense that
it continuously has interactions and collaboration with other energy
system actors and has to function in a multi-level institutional en-
vironment. The complex socio-technical representation of CES into
physical, actor and external environment layers helps to understand
different inter and intra-layer dynamics of CES. The functioning of CES
depends on available generation and demand resources in the physical
system and interaction between them guided and governed by the actor
network. The external environment and the local conditions jointly
determine the operational basis for CES. Hence, CES could have wider
techno-economic, environmental and social impact in the energy
system. In the following Section, we further analyze design and im-
plementation of CES from the responsible innovation perspective to
enhance the positive impacts and to minimize the negative impacts.

4. Operationalizing responsible innovation in CES

Including the demands of different actors at different societal levels,
and different types of values such as affordability and sustainability
asks for what is called responsible research and innovation (RRI). In
other words, RRI aims at improving alignment of technological in-
novation and societal demands and values [34]. It aims to identify the
imperatives and anticipate incompatibilities of societal and technolo-
gical determinism and to counter unwanted effects. Stilgoe defines re-
sponsible innovation as taking care of future through collective stew-
ardship of science and innovation in the present with the aid of its four
dimensions, namely anticipation, reflexivity, inclusion and respon-
siveness [35]. Anticipation involves system thinking and recognizes
complexities, uncertainties, and risks of science and societies [35]. It
also shapes desirable futures and organizes resources towards them
[145]. Reflexivity asks to include wider moral obligations in the roles
and responsibilities of different actors. Inclusion refers to moving be-
yond engagement of stakeholders to the wider public. Responsiveness is
the ability to change shape or direction with changing actors and public
values as well as changing circumstances [35]. RRI asks for integrating
and embedding these dimensions in the governance of CES.

Although the concept of RRI is not new, the ongoing energy system
transformation towards decentralized, digitalized, sustainable and co-
operative energy system is asking for its application to this domain.
Only few scholars have applied this concept in the energy domain and
found to be not yet influenced by RRI approach when considered
globally [34,36,146]. However, detailed analysis do suggest more
correspondence as RRI framework and socio-technical considerations
share the same theoretical background [36]. According to Carbajo and
Cabeza, the key RRI dimensions for energy system transformation are
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science education, public engagement, social justice, gender equality,
ethics, governance, open access and sustainability [36]. Stigka et al.
concludes that the responsibility approach in energy system is moving
its focus from energy economics such as efficiency and circular
economy towards social and behavioral approaches [36,146]. Innova-
tion in CES can be regarded as shared and collective responsibility of its
actors. The dynamics of interaction between its actors and the collective
nature of innovation process in CES make it complex and unpredictable
[147]. In the remaining of this Section, five different aspects of CES
namely socio-technical innovation, markets and business, policies and
regulation, roles and responsibilities as well as values are discussed
where the concept of responsible innovation could be operationalized.

4.1. Socio-technical innovation

There are several socio-technical innovations undergoing in the CES
due to its relevance for the energy system integration. These innova-
tions are mainly driven by the development of the smart grids, cross-
sector energy system integration, need for energy storage as well as
decentralization in the form of local energy initiatives. In addition to
these developments, different technical, socio-economic and political
issues drive the socio-technical innovation in CES. Based on energy
policy objectives, energy system integration requirements as well as
grassroots energy initiatives, the key socio-technical innovation issues
in CES are sustainability, interoperability, affordability, long term en-
ergy storage, energy system integration, energy system performance
improvement such as through local energy balance and energy effi-
ciency as well as relationship to the local communities [82,148-150].
The synergies, frictions and disruptions arising from these issues will
shape the CES and the future energy systems. (Self) governance and
ownership will lead to social innovation in CES.

The type, size and need for CES differ based on long-term and short-
term demand to store energy. Short-term energy storage is important to
achieve energy balance and higher energy efficiency, long-term sea-
sonal energy storage will be essential for energy security and sustain-
ability. The thermal energy storage research till date has focus on
technology development and building integration and its application
for local community has been given little emphasis [151]. Recently,
there are some technical innovation for seasonal storage of heat,
however, long-term electricity storage is still technologically challen-
ging. Moreover, further technical innovations are desirable for har-
nessing the flexibility through integrated operation of heat and elec-
tricity storage systems. Other major issues in energy storage
technologies in general are the limited availability of the raw materials,
increasing demand for rare earth materials, limited production capa-
city, technologies for seasonal storage as well as the cost. Batteries used
in energy storage will be the main contributor to environmental impact
and faces recycling issues [57]. Significant improvements in materials
use, sustainability, performance and costs are needed for CES to con-
tribute in the energy system transformation. Moreover, considering
responsible innovation perspective, human values such as safety,
privacy, justice, access, equality, and sustainability also needs to be
adequately considered in CES [36].

There are numerous attempts to improve energy storage technolo-
gies based on technological and societal (including economic and en-
vironmental) requirements. For example, with increasing volume, the
sustainability of the materials used in the energy storage is increasingly
becoming important. As discussed earlier in Section 2.5, two Dutch
innovations in thermal and electric energy storage, namely Ecovat® and
DrTen® are already embedding sustainability and economic values in
their design. The subterranean thermal energy storage of Ecovat® has
good storage capacity and long lifespan. The initial results of 10% losses
over 6 months are promising for Ecovat® to become affordable seasonal
energy storage [108]. It has potential to serve as the missing link in
sustainability transitions of the local energy systems. Similarly, DrTen®
sea-salt battery is considered to be a cheap and clean source to store
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energy due to the cheap, clean and abundantly present materials used
in its production [105]. It has sea-salt as electrolyte and carbon as
electrode. Its potential application are stationary household or com-
munity level storage as well as at the charging station for the electric
cars. A charging and discharging cycles of more than 7000 cycles has
been demonstrated. The main advantages of DrTen® sea-salt batteries
are full discharge, clean and very low capital and operation cost [105].

From the actor network perspective, the reuse of electric vehicle
batteries into CES has different implications in the socio-technical
system, innovation pathways as well as design of battery packs. For
examples, anticipating and envisioning the second life, the electric
vehicle batteries packs can be designed to suit both mobile and sta-
tionary applications.

4.2. Markets and business

It can be anticipated that the changes in the external environment
such as digitalization of the energy sector, coupling of electricity,
transport and heat sectors as well as system integration can enable
necessary conditions for CES. CES can synergize energy system in-
tegration and sector coupling leading to a more flexible local energy
systems. Decentralized markets for flexibility, ease of market partici-
pation as well as community empowerment are expected to create
better conditions for its implementation. For example, CES might pro-
vide grid balancing services for the energy system operators and earn
additional revenues through the arbitrage. According to Mengelkamp
et al., other promising applications includes grid-strengthening and
management, network balancing, solving capacity issues, and autarky
[152]. The market design of future energy system may provide an en-
abling environment for CES considering its characteristics to participate
in these market segments.

In addition, community participation is essential in design, decision
making as well as operation and management of CES. At the same time,
introduction of energy storage with community participation may sti-
mulate socio-technological changes in the energy system [150]. For
example, CES might affect the program responsibility with higher self-
consumption of local generation [153]. Program responsibility refers to
the responsibility of the energy system actors on their programs for
production, transport and consumption of electricity. Program re-
sponsible parties are expected to act in accordance with these programs
which they provide to the system operator and face penalties if they do
not comply with their submitted schedules. In addition, the local bal-
ancing enabled through CES might defer the investment required for
the gird re-enforcement or CES might be utilized to mitigate local
congestion [58]. New business and governance models may evolve re-
flecting upon these changes.

For the emergence of CES, business model innovation is a pre-
requisite [154,155]. These new business models need to tap and stack
different value streams into a functional business case [32,156].
Moreover, these models needs to continuously evolve with the changing
energy landscape [155]. As far as financing is concerned, CES will re-
quire customized approach and can be funded through several collec-
tive as well as public-private partnership such as local communities,
municipalities, local co-operatives and banks [74,157].

Local energy markets and energy sharing platforms are important
for the implementation of CES which in turn can substantially enhance
their efficiency [74,152,158,159]. The local energy price determined
through the local energy markets has to reflect all the capital costs,
operation and maintenance costs as well as local network costs. The
local energy exchange could take different forms such as peer to peer
exchange further enabled by innovative and transactive blockchain
based technologies [160,161]. At the same time, blockchain can bring
security and trust among those involved and create concerns among
those who are not the part of the system. There are already some
platforms which enables peer to peer energy trading. For example, the
Dutch platform Vandebron®, which means ‘from the source’, allows
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Dutch consumers to buy their electricity directly from the independent
renewable energy producers [159]. Other examples for the peer to peer
trading are Brooklyn micro-grid in United States, OpenUtility® in
United Kingdom and SonnenCommunity® in Germany [115,160,162].

4.3. Policies and regulation

Energy policy and regulation have an important role in creating
enabling conditions for CES. For example, CES cannot emerge in the
environment where it is regulated similar to other sources of energy
generation and consumption [163,164]. CES needs bidirectional energy
and information flows as well as interactions among its several actors.
In the centralized energy system with unidirectional flows this can be
complicated. For example, energy sharing or trading with neighbors is
difficult and grid access for CES can be long, complex and costly [74].
Although, annual residential net-metering in the Netherlands con-
tributed towards higher uptake of rooftop solar PV, it is counter-pro-
ductive for the adoption of energy storage. An energy policy for loca-
tion-based net-metering in the other hand can incentivize higher self-
consumption and local balancing, leading to higher adoption of shared
residential and local CES [74]. Ideally, for both cases, the local com-
munities need to own the community grid with distinct point of
common coupling. Similarly, energy policies and regulation promoting
virtual power plants and virtual energy communities lead towards
higher adoption of virtual CES. This option rely on the main grid and in
the deregulated energy systems system operators should ensure suffi-
cient transport capacity. However, this is an important issues from the
RRI perspective as it ask for fair and reasonable cost allocation for the
use of the main grid.

New regulations are being developed around the world to promote
energy storage. Some of these new regulations such as in the United
states consider energy storage characteristics and provide enabling
conditions for the emergence of CES [164,165]. In Switzerland, a new
policy was released for community self-consumers [166]. In the Neth-
erlands, postcode regulation (postcoderoosregeling), allows energy
sharing among households within a postcode [167]. Spanish self-con-
sumption regulation however, hinders energy storage and community
energy storage is not possible to implement as energy sharing is not
allowed [168].

Furthermore, the legislation needs to be flexible for the experi-
mentation and development of socio-technical models specific to the
local, social and physical conditions. A wide range of models for com-
munity ownership, participation, investment and governance needs to
be permitted by the legal framework for experimentation. For example,
it might be more responsible and less complicated to promote CES to
deal with local congestion than the costly and time-consuming re-en-
forcement of the local grid. In the Netherlands, experimental regulation
is in place to allow demonstration projects such as gridflex Heeten
[68,169].

4.4. Roles and responsibilities

With the implementation of CES, the role of societal and energy
system actors also changes. For example, as discussed in Section 1, the
roles of citizens and local communities change from passive consumers
to prosumagers. Local energy communities could even practice new
roles such as aggregators, flexibility provider, energy service providers
as well as network owner. The roles and responsibilities of energy
system actors needs to be adapted for the management and operation of
CES. The actors need to be anticipative, reflexive and responsive to-
wards changes in the energy systems. In other words, actors interests
also evolve and change overtime as new development such as new
technologies, regulation and market mechanism gets established [42].

CES challenges existing centralized energy structures as well as re-
gimes and creates opportunities for self-governance [170]. In the con-
text of CES, (self-) governance refers to economic and administrative
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practices such as rules of collective decision making among its members
[170,171]. The robustness of self-governance in commons has been
previously demonstrated and its viability for CES depends on local
energy communities’ ability to co-ordinate with different governance
circles as well as social and technical complexity of the energy storage
technologies implemented [172,173]. For example, local communities
often lack the technical skills for operation and maintenance of energy
storage systems, providing roles for energy service companies or tech-
nology service providers. However, the management role still lies with
the energy communities.

The ownership of CES is affected by different financing require-
ments, social welfare issues as well as the risk perceptions [116,174].
CES could be fully community owned or may be developed in part-
nership with public and private sectors [116]. Given the unbundling
requirements, there are key discussions in Europe whether the system
operators can own the energy storage facilities in future [10]. In such
case, energy communities have important responsibility in ownership
of energy storage facilities. Different social and energy system actors
can co-ordinate and interact to co-create a smart local energy system. In
this context, community ownership and governance of energy storage
systems becomes very relevant. Yet, there can be resistance from the
incumbent grid operator in providing grid access and for leasing or
selling the physical network to the local communities operating CES.

4.5. Values

CES provides a range of values, for instance concerning technology,
environment, responsibility and governance related to the local com-
munities and the energy system [42].

The value streams in economic terms could probably be realized
through collaboration with different energy system actors which in turn
might lead to benefits never envisioned before. Sometimes multiple
value streams such as local balancing and flexibility to larger energy
system can be simultaneously harnessed which demands for interaction
and co-ordination among different relevant actors [156].

But CES being unconventional ways to store energy may confront
resistance from local communities and other energy system actors,
which may have different values, concerning for instance ownership,
profitability, safety or sustainability [34]. It can be helpful to consider
varieties and dynamics of actor’s values and interactions in (re) design
of the technological system and the societal context for CES. The actors
values might also be affected by the local context and the process
through which CES is initiated. By this approach conflicting values can
be identified early in the CES implementation and embedded in the
socio-technological design through anticipatory actions and modifica-
tions, avoiding public controversy and resistance.

Several methods such as value sensitive design (VSD) and value case
method (VCM) has been developed to align economic and non-eco-
nomic values of multi-actor and multi-value system such as CES
[34,41,175]. The ultimate aim of value case method is a decision for
collective action with adequate consideration of multiple values of
different actors and is implemented in four iterative steps namely, value
identification, value quantification, value sensitivity and value align-
ment [41]. With respect to RRI, VSD offers a framework for stake-
holders to express their values as well as design operational criteria to
respect and include these values [34]. It facilitates consensus-building
in CES through participation and thereby might increase its social ac-
ceptance.

5. Discussion and conclusions

In the changing energy landscape, CES is emerging as a decen-
tralized socio-technical innovation. The way society perceives energy
consumption, production and storage is changing with the deployment
of distributed energy resources such as CES. With increasing generation
through DERs and changing consumption patterns, the need as well as
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challenges for better alignment of supply and demand will grow and
become increasingly difficult. CES has the potential to be part of the
solution to confront the various challenges of the present energy sys-
tems. It might not only provide competitive energy prices and invest-
ment returns but also helps in fighting climate change, developing co-
operation among neighbors and providing added-value to the local
economy.

Yet, there are technological as well as social challenges at regime
and landscape level for the integration of CES in the present energy
system. The system innovation and socio-technical transition frame-
works such as Technological System Innovation (TIS), Multi-level
Perspective (MLP) and Strategic Niche Management (SNM) help to
understand and study socio-technical dynamics in CES but cannot
provide comprehensive assessment. Especially, categorizing CES as
niche innovation is not sufficient to understand community level dy-
namics as well as collaboration between energy system actors and local
energy communities. In the other hand, conceptualization of CES as
complex socio-technical system helps to outline the co-shaping dy-
namics of actor networks and community level dynamics as well as
important role of various technical and societal elements, such as
governance, market structure, division of responsibilities as well as
legislation. A socio-technical approach to CES development might lead
to the systems that are more acceptable to end users and deliver better
values to its actors.

Based on current developments, three configurations of community
energy storage, namely shared residential, shared local and shared
virtual, can be identified. Shared residential and shared local config-
urations are local specific, whereas shared virtual configuration has no
location specificity and can expand to national level and beyond.
Further development of these configurations depend on local condi-
tions, policy framework, system of regulations as well as market con-
ditions.

In Section 1, several unanswered questions surrounding community
energy storage (CES) were raised. These questions were, what do we
mean with energy storage at the local level, how many community
energy initiatives are involved in CES, how can CES be shaped and
organized, what are the contribution of CES in the energy transition,
what are the conditions for the emergence of CES, and how can RRI be
operationalized in CES? The rest of this Section summarizes how these
questions are addressed in this article.

5.1. Local energy initiatives and CES

Despite, the increasing number of local energy initiatives starting to
engage also with energy storage, there are very few examples of op-
erational CES in practice and a few demonstration projects are being
implemented. However, the growing number of local energy initiatives
and the ongoing energy system transformation indicate a future in
which CES could be prominent. Local pilot demonstration projects are
crucial to show how CES works in practice, learn on new business and
governance models as well to improve its public perception, acceptance
and boarder participation. Energy storage at the local level also means
more participation and control as well as responsibilities for the local
communities.

Local communities can use and articulate energy storage in different
ways depending on their objectives, as well as local, physical, market
and governance conditions. Articulation and alignment of technolo-
gical, social and normative aspects of both the communities and the
energy storage goes on in design, implementation and operation of CES.
Through CES and local energy initiatives, the transformative role of the
local communities can be further enhanced, leading to the transition
towards a sustainable, decarbonized, inclusive and decentralized en-
ergy system.
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5.2. Energy transition and CES

CES is the missing link in the energy transition. It can provide ef-
fective means for energy system integration, flexibility and community
engagement. It not only empowers local communities but also improves
efficiency and strengthens the security of supply. CES can link local
energy initiatives and centralized energy system, enabling the low-
carbon transformation of the overall energy system. In this way, CES
also helps to achieve climate and energy policy objectives.

CES operate in the changing energy landscape, where new tech-
nologies will become available, new institutions and actors will emerge
and roles and responsibilities of the actors continuously change. Its
contribution to energy transition should be assessed not in isolation but
in terms of its interactions, dynamics and exchanges with the energy
system and the local or virtual communities. Therefore, innovative
value streams in synergy with the requirements of both the energy
system and the local or virtual communities is required for CES to en-
hance ongoing energy transition.

5.3. Institutional pre-conditions for the emergence of CES

Current socio-technical configurations, including governmental, fi-
nancial and regulatory systems at the regime level do not yet anticipate
on the implementation of CES. New market structures, enabled through
digitalization such as local energy markets where consumers can di-
rectly share or transact energy is leading to emergence of virtual CES.
Furthermore, implementation of local CES might benefit from new
energy policy as well as new legislation and tariffs structures such as
time of use tariffs and location-based net metering. New organization
and business models as well as coordination and interaction among
community and energy system actors is prerequisite for the CES.

New roles and responsibilities will emerge with the emergence of
CES. For example, the roles of local communities change from con-
sumers to prosumagers. New actors such as intermediaries or energy
service companies can help local communities regarding different CES
configurations as well as comparison of their relative merits. They could
play an important role in empowering households and local commu-
nities and may takeover tedious technical task from local communities.

To summarize, as both local and virtual CES configurations are
gaining maturity, adjustments in all three levels namely physical, actor
as well as external environment including regulation, legislation and
culture is necessary. Enabling technical, regulatory, policy and market
environment as well as suitable conditions for collaboration between
social and energy system actors needs to be developed. In essence, the
process of gaining maturity is a social shaping as demonstrated in ex-
isting pilots. These factors together will determine the emergence of
community energy storage towards mainstream socio-technical in-
novation in the energy system.

5.4. Operationalization of responsible innovation in CES

Responsible innovation, including processes of value sensitive de-
sign as well as concepts of circular economy may provide a helpful
approach to link various values such as affordability, safety, reliability,
inclusion and sustainability in CES development. The RRI approach
provides new discourse through community engagement and value
considerations in design and implementation of CES.

This study focused on energy storage being shaped and enacted by
the local communities. However, to see whether CES is a responsible
innovation towards sustainable energy system may require further
comparative investigation and review of alternatives such as utility
scale energy storage. This study could be used as a basis to develop
analytical framework to quantify the performance indicators for such
comparison. Such assessments of CES should not be limited to economic
benefits but also to wider societal and ethical aspects.
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