5 research outputs found

    Electrochemical Reduction of the Carbonyl Functional Group: The Importance of Adsorption Geometry, Molecular Structure, and Electrode Surface Structure

    No full text
    This paper studies the electrochemical hydrogenation of the carbonyl functional group of acetophenone and 4-acetylpyridine at platinum single-crystal electrodes. Comparison with results obtained for the hydrogenation of acetone featuring an isolated carbonyl functional group reveals the influence of the phenyl ring and the pyridine ring, respectively. Lack of acetone adsorption at Pt(111) and Pt(100) due to a weak interaction between surface and carbonyl functional group renders these surfaces inactive for the hydrogenation of acetone. Adsorption through a strong interaction with the phenyl ring of acetophenone activates the Pt(111) and Pt(100) surfaces for hydrogenation of the acetyl substituent. In agreement with previous results for acetone reduction, the Pt(100) surface is specifically active for the hydrogenolysis reaction, breaking the C–O bond, whereas the other surfaces only hydrogenate the carbonyl functionality. In contrast to the phenyl ring, the pyridine ring has a very different effect: due to the dominant interaction of the N atom of the pyridine ring with the platinum electrode, a vertical adsorption mode is realized. The resulting large physical distance between the carbonyl functional group and the electrode surface inhibits the hydrogenation at all platinum surfaces. This also holds for the Pt(110) electrode, which is otherwise active for the electrochemical hydrogenation of the isolated carbonyl functional group of aliphatic ketones. Our results show how the combination of molecular structure of the reactant and surface structure of the catalyst determine the selective electroreduction of functionalized ketones.Catalysis and Surface Chemistr

    Dissociative adsorption of acetone on platinum single-crystal electrodes

    Get PDF
    In this article, we investigate the poisoning reaction that occurs at platinum electrodes during the electrocatalytic hydrogenation of acetone. A better understanding of this poisoning reaction is important to develop electrocatalysts that are both active for the hydrogenation of carbonyl compounds and resilient against poisoning side reactions. We adsorb acetone to Pt(331), Pt(911), Pt(510), and Pt(533) (i.e., Pt[2(111) x (110)], Pt[5(100) x (111)], [5(100) x (110)], and Pt[4(111) x (100), respectively])) as well as Pt(100) single-crystal electrodes and perform reductive and oxidative stripping experiments after electrolyte exchange. We found that acetone adsorbs molecularly intact on all sites apart from Pt(100) terrace sites and can be stripped reductively from the electrode surface at a potential positive of hydrogen evolution. However, at Pt(100) terraces, acetone adsorbs dissociatively as carbon monoxide, which remains attached to the electrode surface and leads to its poisoning. Strikingly, dissociative adsorption does not occur on step sites with (100) geometry, which suggests that the dissociative adsorption of acetone is limited to Pt(100) terraces featuring a certain minimum ensemble number of freely available Pt atoms.Catalysis and Surface Chemistr
    corecore