26 research outputs found

    MicroRNA profile of Marek's disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs

    Get PDF
    Research over the last few years has demonstrated the increasing role of microRNAs (miRNAs) as major regulators of gene expression in diverse cellular processes and diseases. Several viruses, particularly herpesviruses, also use the miRNA pathway of gene regulation by encoding their own miRNAs. Marek's disease (MD) is a widespread lymphomatous neoplastic disease of poultry caused by the highly contagious Marek's disease virus type 1 (MDV-1). Recent studies using virus-infected chicken embryo fibroblasts have identified at least eight miRNAs that map to the R(L)/R(S) region of the MDV genome. Since MDV is a lymphotropic virus that induces T-cell lymphomas, analysis of the miRNA profile in T-cell lymphoma would be more relevant for examining their role in oncogenesis. We determined the viral and host miRNAs expressed in MSB-1, a lymphoblastoid cell line established from an MDV-induced lymphoma of the spleen. In this paper, we report the identification of 13 MDV-1-encoded miRNAs (12 by direct cloning and 1 by Northern blotting) from MSB-1 cells. These miRNAs, five of which are novel MDV-1 miRNAs, map to the Meq and latency-associated transcript regions of the MDV genome. Furthermore, we show that miRNAs encoded by MDV-1 and the coinfected MDV-2 accounted for >60% of the 5,099 sequences of the MSB-1 “miRNAome.” Several chicken miRNAs, some of which are known to be associated with cancer, were also cloned from MSB-1 cells. High levels of expression of MDV-1-encoded miRNAs and potentially oncogenic host miRNAs suggest that miRNAs may have major roles in MDV pathogenesis and neoplastic transformation

    The molecular basis of tick-host interactions

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:D205955 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Tick-host interactions in spirochete transmission

    No full text
    Tick-borne spirochetes include borreliae that cause Lyme disease and relapsing fever in humans. They survive in a triangle of parasitic interactions between the spirochete and its vertebrate host, the spirochete and its tick vector, and the host and the tick. Until recently, the significance of vector-host interactions in the transmission of arthropod-borne disease agents has been overlooked. However, there is now compelling evidence that the pharmacological activity of tick saliva can have a profound effect on pathogen transmission both from infected tick to uninfected host, and from infected host to uninfected tick. The salivary glands of ticks provide a pharmacopoeia of anti-inflammatory, anti-haemostatic and anti-immune molecules. These include bioactive proteins that control histamine, bind immunoglobulins, modulate cytokines, and inhibit the alternative complement cascade. The effect of these molecules is to provide a privileged site at the tick-host interface in which borreliae and other tick-borne pathogens are sheltered from the normal innate and acquired host immune mechanisms that combat infections. Understanding the key events at the tick vector-host interface, that promote spirochete infection and transmission, will provide a better understanding of the epidemiology and ecology of these important human pathogen

    miRNA expression profiling of mycosis fungoides

    No full text
    MicroRNAs (miRNAs) are small RNA species that regulate gene expression post-transcriptionally and are aberrantly expressed in many malignancies including lymphoma. However, the role of miRNAs in the pathogenesis of T-cell lymphoid malignancies is poorly understood. Previously we examined the miRNA profile of SĂ©zary syndrome (Sz), a leukemia of skin-homing memory T cells. In this study we determined the complete miRNome of mycosis fungoides (MF), the most common type of cutaneous T cell lymphoma. The miRNA profile of skin biopsies from 19 patients with tumor stage MF and 12 patients with benign inflammatory dermatoses (eczema and lichen planus) were compared by microarray analysis. We identified 49 miRNAs that are differentially expressed in tumor stage MF compared to benign inflammatory dermatoses using ANOVA analysis (P < 0.05, Benjamini-Hochberg corrected). The majority of the differentially expressed miRNAs (30/49) were up-regulated in tumor stage MF. The most significant differentially expressed were miR-155 and miR-92a (both up-regulated in tumor stage MF), while miR-93 showed the highest up-regulation in tumor stage MF with a fold difference of 5.8. Differential expression of a selection of these miRNAs was validated by miRNA-Q-PCR on additional test groups (tumors and controls). None of the miRNAs up-regulated in tumor stage MF was previously shown to be up-regulated in Sz, and only 2 of the 19 miRNAs down-regulated in tumor stage MF were also down-regulated in Sz. Taken together this report is the first describing the miRNA signature of tumor stage MF.Dermatology-oncolog

    Identification of Recurrent Mutations in the microRNA-Binding Sites of B-Cell Lymphoma-Associated Genes in Follicular Lymphoma

    No full text
    : the more aggressive transformed FL (tFL). However, the molecular process driving this transformation is uncertain. In this work, we aimed to identify microRNA (miRNA)-binding sites recurrently mutated in follicular lymphoma patients, as well as in transformed FL patients. Using whole-genome sequencing data from FL tumors, we discovered 544 mutations located in bioinformatically predicted microRNA-binding sites. We then studied these specific regions using targeted sequencing in a cohort of 55 FL patients, found 16 recurrent mutations, and identified a further 69 variants. After filtering for QC, we identified 21 genes with mutated miRNA-binding sites that were also enriched for B-cell-associated genes by Gene Ontology. Over 40% of mutations identified in these genes were present exclusively in tFL patients. We validated the predicted miRNA-binding sites of five of the genes by luciferase assay and demonstrated that the identified mutations in BCL2 and EZH2 genes impaired the binding efficiency of miR-5008 and miR-144 and regulated the endogenous levels of messenger RNA (mRNA)

    Identification of Recurrent Mutations in the microRNA-Binding Sites of B-Cell Lymphoma-Associated Genes in Follicular Lymphoma

    No full text
    : the more aggressive transformed FL (tFL). However, the molecular process driving this transformation is uncertain. In this work, we aimed to identify microRNA (miRNA)-binding sites recurrently mutated in follicular lymphoma patients, as well as in transformed FL patients. Using whole-genome sequencing data from FL tumors, we discovered 544 mutations located in bioinformatically predicted microRNA-binding sites. We then studied these specific regions using targeted sequencing in a cohort of 55 FL patients, found 16 recurrent mutations, and identified a further 69 variants. After filtering for QC, we identified 21 genes with mutated miRNA-binding sites that were also enriched for B-cell-associated genes by Gene Ontology. Over 40% of mutations identified in these genes were present exclusively in tFL patients. We validated the predicted miRNA-binding sites of five of the genes by luciferase assay and demonstrated that the identified mutations in BCL2 and EZH2 genes impaired the binding efficiency of miR-5008 and miR-144 and regulated the endogenous levels of messenger RNA (mRNA)

    The urinary transcriptome as a source of biomarkers for prostate cancer

    No full text
    Prostate cancer (PCa) is the second most common cancer of men and is typically slow-growing and asymptomatic. The use of blood PSA as a screening method has greatly improved PCa diagnosis, but high levels of false positives has raised much interest in alternative biomarkers. We used next-generation sequencing (NGS) to elucidate the urinary transcriptome of whole urine collected from high-stage and low-stage PCa patients as well as from patients with the confounding diagnosis of benign hyperplasia (BPH). We identified and validated five differentially expressed protein-coding genes (FTH1 BRPF1, OSBP, PHC3, and UACA) in an independent validation cohort of small-volume (1 mL) centrifuged urine (n = 94) and non-centrifuged urine (n = 84) by droplet digital (dd)PCR. These biomarkers were able to discriminate between BPH and PCa patients and healthy controls using either centrifuged or non-centrifuged whole urine samples, suggesting that the urinary transcriptome is a valuable source of non-invasive biomarkers for PCa that warrants further investigation

    The urinary transcriptome as a source of biomarkers for prostate cancer

    No full text
    Prostate cancer (PCa) is the second most common cancer of men and is typically slow-growing and asymptomatic. The use of blood PSA as a screening method has greatly improved PCa diagnosis, but high levels of false positives has raised much interest in alternative biomarkers. We used next-generation sequencing (NGS) to elucidate the urinary transcriptome of whole urine collected from high-stage and low-stage PCa patients as well as from patients with the confounding diagnosis of benign hyperplasia (BPH). We identified and validated five differentially expressed protein-coding genes (FTH1 BRPF1, OSBP, PHC3, and UACA) in an independent validation cohort of small-volume (1 mL) centrifuged urine (n = 94) and non-centrifuged urine (n = 84) by droplet digital (dd)PCR. These biomarkers were able to discriminate between BPH and PCa patients and healthy controls using either centrifuged or non-centrifuged whole urine samples, suggesting that the urinary transcriptome is a valuable source of non-invasive biomarkers for PCa that warrants further investigation
    corecore