60 research outputs found

    A pseudospark cathode Cherenkov maser : theory and experiment

    Get PDF
    The pseudospark discharge offers the possibility of producing electron beams which are very attractive for use in high-power microwave generation. A pseudospark-based Cherenkov maser amplifier is currently under development at Strathclyde University. The electron beam source for this maser is a multi-gap pseudospark discharge. Preliminary results from recent Cherenkov maser experiments and a comparison with a numerical simulation are presented. A microwave pulse of 100 ns duration and approximately 10 kW peak power was generated by a 80 kV, 20 A beam passed through an alumina-lined waveguide when the interaction was allowed to start up from noise, which appeared to originate from the pseudospark discharge. Simulations agree well with the experimental results when a beam energy spread of 1.5% is assumed

    Apparatus for investigating non-linear microwave interactions in magnetised plasma

    Get PDF
    Plasma, as a non-linear medium supporting a rich and diverse range of electromagnetic and electrostatic oscillations, can enable a range of multi-wave interactions when excited by multiple injected propagating electromagnetic waves. Electromagnetic wave injection plays a dominant role in the introduction of energy in laser plasma interactions and in the heating of magnetically confined fusion reactors. In magnetically confined plasma, the EM waves tend to fall in the RF to microwave range, whilst in laser plasma interactions the signals are typically near the optical part of the spectrum

    Cold atom dynamics in non-Abelian gauge fields

    Full text link
    The dynamics of ultracold neutral atoms subject to a non-Abelian gauge field is investigated. In particular we analyze in detail a simple experimental scheme to achieve a constant, but non-Abelian gauge field, and discuss in the frame of this gauge field the non-Abelian Aharanov-Bohm effect. In the last part of this paper, we discuss intrinsic non-Abelian effects in the dynamics of cold atomic wavepackets.Comment: 8 pages, 9 figure

    Matter-wave cavity gravimeter

    Full text link
    We propose a gravimeter based on a matter-wave resonant cavity loaded with a Bose-Einstein condensate and closed with a sequence of periodic Raman pulses. The gravimeter sensitivity increases quickly with the number of cycles experienced by the condensate inside the cavity. The matter wave is refocused thanks to a spherical wave-front of the Raman pulses. This provides a transverse confinement of the condensate which is discussed in terms of a stability analysis. We develop the analogy of this device with a resonator in momentum space for matter waves.Comment: 15 pages, 6 Figures. The expression for the atomic mirror focal length has been corrected. Other minor corrections and actualizations to the previously published versio

    Pion contamination in the MICE muon beam

    Get PDF
    The international Muon Ionization Cooling Experiment (MICE) will perform a systematic investigation of ionization cooling with muon beams of momentum between 140 and 240\,MeV/c at the Rutherford Appleton Laboratory ISIS facility. The measurement of ionization cooling in MICE relies on the selection of a pure sample of muons that traverse the experiment. To make this selection, the MICE Muon Beam is designed to deliver a beam of muons with less than \sim1\% contamination. To make the final muon selection, MICE employs a particle-identification (PID) system upstream and downstream of the cooling cell. The PID system includes time-of-flight hodoscopes, threshold-Cherenkov counters and calorimetry. The upper limit for the pion contamination measured in this paper is fπ<1.4%f_\pi < 1.4\% at 90\% C.L., including systematic uncertainties. Therefore, the MICE Muon Beam is able to meet the stringent pion-contamination requirements of the study of ionization cooling.Department of Energy and National Science Foundation (U.S.A.), the Instituto Nazionale di Fisica Nucleare (Italy), the Science and Technology Facilities Council (U.K.), the European Community under the European Commission Framework Programme 7 (AIDA project, grant agreement no. 262025, TIARA project, grant agreement no. 261905, and EuCARD), the Japan Society for the Promotion of Science and the Swiss National Science Foundation, in the framework of the SCOPES programme

    Performance of the MICE diagnostic system

    Get PDF
    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams of a neutrino factory and for multi-TeV lepton-antilepton collisions at a muon collider. The international Muon Ionization Cooling Experiment (MICE) has demonstrated the principle of ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. This paper documents the performance of the detectors used in MICE to measure the muon-beam parameters, and the physical properties of the liquid hydrogen energy absorber during running

    Design of an energy recovery system for a gyrotron backward-wave oscillator

    No full text
    To realize the full potential of a gyrotron backward-wave oscillator (gyro-BWO), an energy recovery system was designed using Particle-In-Cell (PIC) simulations and optimized using both a genetic algorithm and PIC simulations. Simulations were carried out to optimize a periodic structure for separation of the spent electron beam and the output radiation produced by a gyro-BWO in the 8.0-9.5 GHz frequency range. The spent electron beam can be collected using a multistage depressed collector. The number and electric potentials of the electrodes were optimized to achieve the best overall recovery efficiency for specific parameters of the spent beam. The 3-D PIC code MAGIC was used to simulate the electrons' trajectories and a genetic algorithm was used to refine the electrode shapes for optimum efficiency

    Design of Planar Millimeter-Wave Metallic Structures for Wakefield Acceleration

    Get PDF
    Linear accelerators operating at millimeter or sub-terahertz frequencies and short pulse duration have the advantages of lower power consumption and high repetition rate. In this paper planar metallic accelerating structures with different modes operating at 210 GHz were designed. A tolerance study was also carried out to determine the sensitivities of the geometric parameters to the wakefield acceleration performance. The generated Wakefield was simulated using the beam parameter of the Compact Linear Advanced Research Accelerator (CLARA) test facility at Daresbury Laboratory. For a 55 MeV single electron bunch with charge of 250 pC and a bunch length of 0.27 mm (0.9 ps), an equivalent acceleration gradient of 20 MV/m was achieved in the simulation. The relatively modest acceleration gradient was limited by the charge in a single bunch. The acceleration gradient could be further improved by using a bunch train which has larger total bunch charge. From the simulation, the acceleration gradient of 100 MV/m can be generated when it is driven by a 10-bunch beam train

    A 32 ghz bragg free-electron maser (FEM) oscillator with axial guide magnetic field

    No full text
    A narrow-band Free-Electron Maser (FEM) oscillator with a Bragg resonator was operated in the reversed guide field regime. A high-current accelerator generated the 300keV, 30A, 100ns electron beam. Radiation at 32GHz frequency and 500kW power, corresponding to ~5% efficiency, was measured. The measured FEM parameters agreed with predictions of a numerical simulation. The observed radiation frequencies compared well with ''cold'' microwave calibration of the cavity

    Free electron maser amplifier experiments

    No full text
    We present results from the X-band reversed guide magnetic field Raman Free Electron Maser (FEM) amplifier experiment at Strathclyde University. The FEM has been designed for zero slippage to achieve maximum instantaneous bandwidth. The tuneablity is further extended by the adjustment of beam voltage and undulator field strength. A 1 kW TWT has been used as the input source for broadband measurements and two 25 kW magnetrons for saturated output power measurements at discrete frequencies. Results show an instantaneous −3 dB bandwidth of 30% for a fixed cathode voltage and magnetic field. The device can be tuned over a range of 65% of the centre frequency by adjusting the cathode voltage. A saturated power of over 1 MW has been measured for 50 A input current. Broadband unsaturated gains of over 35 dB have been measured. An experiment using a 50 A beam from a thermionic cathode electron gun designed at Strathclyde is currently in progress. This will theoretically allow CW operation of the FEM using a DC undulator magnet and DC power source
    corecore