150 research outputs found

    Extended QCD(2) from dimensional projection of QCD(4)

    Get PDF
    We study an extended QCD model in (1+1) dimensions obtained from QCD in 4D by compactifying two spatial dimensions and projecting onto the zero-mode subspace. We work out this model in the large NcN_c limit and using light cone gauge but keeping the equal-time quantization. This system is found to induce a dynamical mass for transverse gluons -- adjoint scalars in QCD(2), and to undergo a chiral symmetry breaking with the full quark propagators yielding non-tachyonic, dynamical quark masses, even in the chiral limit. We study quark-antiquark bound states which can be classified in this model by their properties under Lorentz transformations inherited from 4D. The scalar and pseudoscalar sectors of the theory are examined and in the chiral limit a massless ground state for pseudoscalars is revealed with a wave function generalizing the so called 't Hooft pion solution.Comment: JHEP class, 16 pages, 3 figures. Change in the title, some improvements in section 2, minors changes and comments added in introduction and conclusions. References added. Version appearing in JHE

    Linear Sigma Models of H and KK Monopoles

    Full text link
    We propose a gauged linear sigma model of k H-monopoles. We also consider the T-dual of this model describing KK-monopoles and clarify the meaning of "winding coordinate" studied recently in hep-th/0507204.Comment: 13 pages, lanlmac; V3:added argument on the nature of disk instanto

    Properties of Intersecting p-branes in Various Dimensions

    Get PDF
    General properties of intersecting extremal p-brane solutions of gravity coupled with dilatons and several different d-form fields in arbitrary space-time dimensions are considered. It is show that heuristically expected properties of the intersecting p-branes follow from the explicit formulae for solutions. In particular, harmonic superposition and S-duality hold for all p-brane solutions. Generalized T-duality takes place under additional restrictions on the initial theory parameters .Comment: 14 pages, RevTeX, misprints are corrected and more Comments are added, information about one of the authors (M.G.I.) available at http://www.geocities.com/CapeCanaveral/Lab/419

    Thermal Partition Functions for S-branes

    Full text link
    We calculate the thermal partition functions of open strings on the S-brane backgrounds (the bouncing or rolling tachyon backgrounds) both in the bosonic and superstring cases. According to hep-th/0302146, we consider the discretized temperatures compatible with the pure imaginary periodicity of tachyon profiles. The ``effective Hagedorn divergence'' is shown to appear no matter how low temperature is chosen (including zero-temperature). This feature is likely to be consistent with the large rate of open string pair production discussed in hep-th/0209090 and also emission of closed string massive modes hep-th/0303139. We also discuss the possibility to remove the divergence by considering the space-like linear dilaton backgrounds as in hep-th/0306132.Comment: 33 pages, no figure; v2 typos corrected, a reference adde

    Wormhole phase in the RST model

    Full text link
    We show that the RST model describing the exactly soluble black hole model can have a dynamical wormhole solution along with an appropriate boundary condition. The necessary exotic matter which is usually negative energy density is remarkably produced by the quantization of the infalling matter fields. Then the asymptotic geometry in the past is two-dimensional anti-de Sitter(AdS2_2), which implies the exotic matter is negative. As time goes on, the wormhole eventually evolves into the black hole and its Hawking radiation appears. The throat of the static RST wormhole is lower-bounded but in the presence of infalling matter it collapses to a black hole.Comment: v1. REVTeX3, 12 pages and 1 figure; v2. JHEP3, 10 pages and 1 figure, version published in JHE

    A silence black hole: Hawking radiation at the Hagedorn temperature

    Full text link
    We compute semi-classically the Hawking emission for different types of black hole in type II string theory. In particular we analyze the thermal transition between NS5 branes and Little String Theory, finding compelling evidence for information recovering. We find that once the near horizon limit is taken the emission of a full family of models is exactly thermal even if back-reaction is taken into account. Consequently these theories are non-unitary and can not convey any information about the black hole internal states. It is argue that this behaviour matches the string theory expectations. We suggest a plausible reason for the vanishing of the jet-quenching parameter in such theories.Comment: 18 pages, harvma

    Polyakov loop correlators from D0-brane interactions in bosonic string theory

    Get PDF
    In this paper we re-derive the effective Nambu-Goto theory result for the Polyakov loop correlator, starting from the free bosonic string and using a covariant quantization. The boundary conditions are those of an open string attached to two D0-branes at spatial distance R, in a target space with compact euclidean time. The one-loop free energy contains topologically distinct sectors corresponding to multiple covers of the cylinder in target space bordered by the Polyakov loops. The sector that winds once reproduces exactly the Nambu-Goto partition function. In our approach, the world-sheet duality between the open and closed channel is most evident and allows for an explicit interpretation of the free energy in terms of tree level exchange of closed strings between boundary states. Our treatment is fully consistent only in d=26; extension to generic d may be justified for large R, and is supported by Montecarlo data. At shorter scales, consistency and Montecarlo data seem to suggest the necessity of taking into account the Liouville mode of Polyakov's formulation.Comment: 17 pages, 4 figures, minor corrections, a few references added, version accepted for publication in JHE

    Superconformal Multi-Black Hole Moduli Spaces in Four Dimensions

    Full text link
    Quantum mechanics on the moduli space of N supersymmetric Reissner-Nordstrom black holes is shown to admit 4 supersymmetries using an unconventional supermultiplet which contains 3N bosons and 4N fermions. A near-horizon limit is found in which the quantum mechanics of widely separated black holes decouples from that of strongly-interacting, near-coincident black holes. This near-horizon theory is shown to have an enhanced D(2,1;0) superconformal symmetry. The bosonic symmetries are SL(2,R) conformal symmetry and SU(2)xSU(2) R-symmetry arising from spatial rotations and the R-symmetry of N=2 supergravity.Comment: 23 pages, harvmac. v2: many typos fixe

    Tachyons in Compact Spaces

    Full text link
    We discuss condensations of closed string tachyons localized in compact spaces. Time evolution of an on-shell condensation is naturally related to the worldsheet RG flow. Some explicit tachyonic compactifications of Type II string theory is considered, and some of them are shown to decay into supersymmetric theories known as the little string theories.Comment: 14 page

    Orientifolds of SU(2)/U(1) WZW Models

    Get PDF
    The orientifolds of SU(2)/U(1) gauged WZW models are investigated. In particular, we construct the new type orientifolds and identify their geometries. We closely follow the analysis of D-branes in the SU(2)/U(1) WZW models, which was given by Maldacena, Moore and Seiberg.Comment: 33 pages, 3 figures, the geometry of orientifolds corrected and the spectral flow identification reconsidere
    • …
    corecore