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Abstract: In this paper we re-derive the e®ective Nambu-Goto theory result for the

Polyakov loop correlator, starting from the free bosonic string and using a covariant quan-

tization. The boundary conditions are those of an open string attached to two D0-branes

at spatial distance R, in a target space with compact euclidean time. The one-loop free

energy contains topologically distinct sectors corresponding to multiple covers of the cylin-

der in target space bordered by the Polyakov loops. The sector that winds once reproduces

exactly the Nambu-Goto partition function. In our approach, the world-sheet duality be-

tween the open and closed channel is most evident and allows for an explicit interpretation

of the free energy in terms of tree level exchange of closed strings between boundary states.

Our treatment is fully consistent only in d = 26; extension to generic d may be justi¯ed

for large R, and is supported by Montecarlo data. At shorter scales, consistency and Mon-

tecarlo data seem to suggest the necessity of taking into account the Liouville mode of

Polyakov’s formulation.
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1. Introduction

It is a long-standing belief [1] that the con¯ning regime of non-abelian gauge theory should

be described by an e®ective string theory describing the °uctuations of the color °ux tube.

Many theoretical insights and proposals have been put forward, while the development of

lattice gauge theories (LGT) provides a better and better numerical test ground for the

various models.

One of the main predictions which can be extracted from an e®ective string model

and then tested in LGT simulations is the potential V (R) between two external, massive

quark and anti-quark sources in a pure glue theory. This potential can be obtained by

considering, for instance, a rectangular Wilson loop W (L,R) of sides L and R, for which

< W (L,R) >∼ e¡LV (R) in the limit of large L. In the con¯ning phase, the area law

corresponds to a linear potential V (R) = T R + . . .. In a string interpretation, the area

term T LR in the exponent of the Wilson loop is the classical action of the string model; T
represents the string tension.1 Upon quantization of the string model, we expect corrections

to this classical potential.

In a seminal paper, LÄuscher, Symanzik and Weisz [2], starting from the loop equations

satis¯ed by the Wilson loops, derived the leading correction for large R. They found

V (R) = T R− ¼

24

d− 2

R
+O

(
1

R2

)
. (1.1)

Their computation, and subsequent ref. [3], linked this correction to the universal quantum

contribution of d − 2 massless modes corresponding to the transverse °uctuations of the

string joining the quark–anti-quark pair. In this spirit, most of the theoretical calcula-

tions and of the comparisons with the lattice results in these last years were performed in

1We denote the string tension with T rather than with the usual notation σ to avoid confusion with the

spatial coordinate of the string world sheet.
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an effective description via the c = d − 2 two-dimensional conformal ¯eld theory of free

bosons de¯ned over the space-time surface of interest and with the appropriate boundary

conditions; for instance, over the rectangle bordered by the Wilson loop, with Dirichlet

boundary conditions. The picture may be re¯ned by allowing a set of higher order interac-

tions among the ¯elds of the theory, whose precise form distinguishes the various e®ective

theories. In a string picture, the underlying string model should determine a speci¯c form

of the e®ective theory, and an expression of the potential that extends eq. (1.1) to ¯nite

values of R.

An observable which presents a lot of interest in this respect is the correlator of two

Polyakov loops at spatial distance R in the gauge theory at ¯nite temperature 1/L. On the

one hand, this quantity can be measured with very high precision on the lattice. On the

other hand, in a string interpretation, the correlation is due to the cylindric world-sheet

spanned by the stretched string and is therefore associated to the partition function of the

e®ective string model, and not just to its ground state energy V (R). The Polyakov loop is

thus very useful to discriminate between di®erent models.

The simplest and most natural string model is the Nambu-Goto [4] one. For the

Nambu-Goto string with boundary conditions corresponding to ¯xed ends in the spatial

directions (the static quark and anti-quark) Alvarez [5] (for d→∞) and Arvis [6], with a

formal quantization, obtained the energy spectrum

En(R) = T R
√

1 +
2¼

T R2

(
n− d− 2

24

)
. (1.2)

The static potential equals the lowest energy level: V (R) = E0(R), reproducing eq. (1.1)

for large R. The partition function is thus

Z =
∑

n

wne
¡LEn(R) , (1.3)

wn being the usual multiplicities of the bosonic string. The derivation of eqs. (1.2) and (1.3)

in [6] uses the re-parametrization invariance of the world-sheet to reach the conformal gauge

(where the Nambu-Goto action is equivalent to the free string action) and the residual

conformal invariance to ¯x a light-cone type gauge (which is sometimes denoted as “physical

gauge”). This leaves as only independent dynamical variables the transverse modes, which

become oscillators upon quantization. The energy, in particular, is re-expressed in terms

of the occupation number n of these oscillators and the spectrum eq. (1.2), as remarked

in [7], stems from the analogue of the standard mass formula M 2 = T [n− (d− 2)/24] for

the bosonic open string with free ends.

This bosonic string model, of course, is truly consistent at the quantum level only if

d = 26: as usual in light-cone type gauges, Lorentz invariance is otherwise broken. It was

however noticed in [7] that the coe±cient of the anomaly vanishes for R → ∞, so that in

this regime the model could be consistent.

In these last years, thanks to various remarkable improvements in lattice simula-

tions [8 – 11] the e®ective string picture could be tested with a very high degree of precision

and con¯dence [11]–[27]. The picture which emerges is that at large inter-quark distances

– 2 –
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and low temperatures the Nambu-Goto e®ective string eq. (1.2) correctly describes the

Montecarlo data. Moreover, this result is universal, meaning that it does not depend on

the particular gauge group under study (the same behaviour is observed in models as dif-

ferent as the Z2 gauge model in (2 + 1) dimensions [16] and the SU(3) LGT in (3 + 1)

dimensions [12]). As the inter-quark distance decreases and/or the temperature increases

(i.e. as the de-con¯nement transition is approached) clear deviations from this picture are

observed and the universality mentioned above is partially lost [14, 16 – 18].

These deviations could well be connected to the inconsistency of the model at d < 26

becoming more and more relevant as R decreases. A consistent quantum formulation in

d < 26 can be sought in the Polyakov formulation [28]. We will brie°y comment on this

possibility in sec. (3).

In this paper, we re-derive the e®ective Nambu-Goto theory, and in particular the

result eq. (1.3) for the Polyakov loop correlator, starting from the free bosonic string and

using a covariant quantization.2 The boundary conditions (the same as in Arvis’ paper)

are described in modern terms as those of an open string attached to two D0-branes at

spatial distance R. We work at ¯nite temperature, i.e., in a target space with compact

euclidean time, and compute the free energy for such open strings. This is nothing but the

well-known Polchinski derivation of the interaction between two D-branes [31], adapted to

the present case. We do not impose any light-cone-like or physical gauge, so we keep the

string world-sheet distinct from the target-space surface bordered by the Polyakov loops. In

fact, the free energy contains di®erent topological sectors corresponding to multiple covers

of the cylinder in target space bordered by the Polyakov loops. The sector that winds once

reproduces exactly eq. (1.3). Thus, the expression of the Polyakov loop correlator and the

inter-quark potential obtained from the covariant quantization of the free bosonic string is

the one of the Nambu-Goto e®ective string, and not the one3 obtained from the e®ective

free bosonic string, i.e. the CFT of d − 2 free bosons which is the simplest element in the

universality class of eq. (1.1).

Just as for Arvis, our treatment is fully consistent only in d = 26; extension to generic

d may be justi¯ed for large R, and is supported by Montecarlo data as already described

above.

We think that the re-derivation of the Nambu-Goto e®ective theory presented here

may have some advantages. It dwells on a standard computation in the framework of the

free bosonic string, the open string free energy at one loop, for which simple operatorial

methods are e®ective. Not having ¯xed a “physical gauge”, the world-sheet duality between

the open and closed channel is most evident and allows for an explicit interpretation of

2In a covariant quantization, the conformal invariance of the free string model is not gauge-¯xed by iden-

tifying the world-sheet coordinates with some directions in the target space. The constraints corresponding

to the conformal symmetry (Virasoro constraints) are imposed at the quantum level ¶a la Gupta-Bleuer (old

covariant quantization) or via BRST quantization. See, for instance, [29] or [30] for a review; some more

details are recalled here in section 2.
3In this case, the energy spectrum corresponds to the second-order truncation of the square-root in eq.

(1.2), yielding a partition function which is simply Z(0) = eT LRη(i L
2R

), η being the well known Dedekind

function.

– 3 –
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the free energy in terms of tree level exchange of closed string states between boundary

states. Our formulation is well suited in principle to study the contributions to the inter-

quark potential from string interactions, which in our language would mean wrapping the

Polyakov string on surfaces (bordered by the Polyakov loops) with handles, as well as

to investigate di®erent observables such as Wilson loops or interfaces. It could also be

interesting to investigate the possible relevance in the gauge theory of the contributions

to the free energy with di®erent winding numbers. Finally, since the covariant treatment

basically coincides with Polyakov’s formulation upon neglecting the Liouville ¯eld, one may

try to correct its results at ¯nite scale R by including the e®ect of the Liouville theory, see

the brief discussion in section 3.

This paper is organized as follows. Section 2 contains the main computation. In partic-

ular, in subsection 2.1 we compute the open string free energy, in subsection 2.2 we perform

its modular transformation and in subsection 2.3 we give a detailed re-interpretation of the

modular transformed expression in the closed string channel. In section 3 some conclusions

and speculations are presented.

2. Polyakov loop correlators and strings between D0-branes

The Polyakov loop is the trace of the temporal Wilson line induced by the presence of a

static quark minimally coupled to the non-abelian gauge ¯eld. In a stringy perspective,

the quark represents the end-point of a string. The v.e.v. of P ( ~R) is related to the free

energy of this static quark: 〈P ( ~R)〉 = e¡F , and a non-zero value for this v.e.v. signals

de-con¯nement, as having an isolated quark requires a ¯nite energy.

The Polyakov loop is the order parameter of the

PSfrag replacements
T

x0

~x

~R
D0D0

q q̄

Figure 1: Let us consider two

Polyakov loops at spatial distance ~R.

An open string connecting the two

external static quarks obeys bound-

ary conditions corresponding to D0-

branes on a compact space.

ZN global symmetry which appears when the SU(N)

gauge theory is regularized on a lattice with a ¯nite-

temperature geometry (i.e. periodic boundary condi-

tions in the “time” direction). This additional sym-

metry coincides with the center of the original gauge

group and is broken in the de-con¯ned phase.

An observable which can be measured with great

accuracy on the lattice is the connected correlator of

two spatially separated Polyakov loops,

〈P (~0)P (~R)〉c . (2.1)

In the string picture, see ¯gure 1, the correlation is

due to the strings connecting the two external, static

quark and anti-quark that span the two Polyakov lo-

ops. We take the point of view that such strings can

be described by the standard bosonic string theory in the d-dimensional space-time under

consideration, which is °at, but with compact Euclidean time

x0 ∼ x0 + L . (2.2)

– 4 –
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Using the ¯rst order formulation, the string action in the conformal gauge reads simply

S =
1

4¼®′

∫
d¿

∫ π

0
d¾
[
(∂τX

M )2 + (∂σX
M )2

]
+ Sgh. , (2.3)

where ¾ ∈ [0, ¼] parametrizes the spatial extension of the string and ¿ its proper time

evolution. The string tension T is given in this notation by

T =
1

2¼®′
. (2.4)

The ¯elds XM (¿, ¾), with M = 0, . . . , d − 1, describe the embedding of the string world-

sheet in the target space and form the 2-dimensional CFT of d free bosons. The term

Sgh. in eq. (2.3) is the action for the ghost and anti-ghost ¯elds (traditionally called c

and b) that arise from the jacobian for ¯xing the conformal gauge. We do not really

need here its explicit expression, see [29] or [30] for reviews. In the conformal gauge the

world-sheet metric is of the form gαβ = eφ±αβ , and corresponds to a CFT of central charge

cgh. = −26. The scale factor eφ decouples at the classical level, but this property persists at

the quantum level only if the anomaly parametrized by the total central charge c = d− 26

vanishes. We will nevertheless proceed in the case of general d, according to the discussion

in the introduction.

The open string joining the q-¹q static quarks as in ¯gure 1 obeys Neumann boundary

conditions at both ends in the time direction:

∂σX
0(¿, ¾)

∣∣
σ=0,π

= 0 , (2.5)

while it satis¯es Dirichlet boundary conditions in the spatial directions:

~X(¿, 0) = 0 , ~X(¿, ¼) = ~r . (2.6)

These conditions constrain the endpoints to two lines (1-dimensional “branes”) which are

nowadays known as D0-branes. The mode expansion of the XM ¯elds with such boundary

conditions is

X0(¿, ¾) = x̂0 + 2®′p̂0¿ + i
√

2®′
∑

n6=0

®0

n
e¡inτ cosn¾ ,

~X(¿, ¾) =
~R

¼
¾ −
√

2®′
∑

n6=0

~®

n
e¡inτ sinn¾ . (2.7)

Upon canonical quantization, the oscillators ®Mn obey the algebra

[
®Mm , ®

N
n

]
= m±m+n,0 ±

MN . (2.8)

The eigenvalues p0 of the momentum operator p̂0 are discrete, because of the periodicity

eq. (2.2):

p̂0 → 2¼n

L
. (2.9)

– 5 –
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The generators of the conformal transformations are called Virasoro generators and tradi-

tionally indicated as Lm. In particular, L0 generates the world-sheet dilations and corre-

sponds to the hamiltonian derived from the action eq. (2.3). It receives therefore contri-

butions from the bosons and the ghost system: L0 = L
(X)
0 + L

(gh.)
0 , and we have

L
(X)
0 = ®′(p̂0)2 +

R2

4¼2®′
+

∞∑

n=1

Nn −
d

24
, (2.10)

where Nn =
∑

M ®M¡n · ®Mn is the occupation number for the oscillators ®Mn , and d/24

is the (³ function regularized4) normal ordering constant. The contribution R2/(4¼2®′)
represents the energy needed to stretch the string between the two branes. For the b, c

ghost system we have, see for instance [29],

Lgh
0 = non-zero modes +

1

12
. (2.11)

The b, c, are indeed anti-commuting bosonic ¯elds, and they get a normal ordering constant

of the opposite sign with respect to the X’s and, in the trace of eq. (2.12) they will

contribute exactly the inverse of the non-zero mode part of two bosonic directions.

2.1 Open string free energy

Let us now compute the one-loop free energy of the (non-critical) open strings with their

endpoints attached to the two di®erent D0-branes. The expression to be considered is5

F = L

∫ ∞

0

dt

2t
Tr qL0 . (2.12)

In this expression, we integrate over the single real modulus t of the world-sheet surface,

which is a cylinder, as we have to do in our ¯rst-order formulation. The factor L represents

the volume of the only target space direction along which the excitations can propagate,

namely the Euclidean time. In eq. (2.12) we introduced

q = exp(−2¼t) . (2.13)

The trace in eq. (2.12) decomposes in a trace over non-zero modes and a zero-mode

part. For the non-zero modes, including also the normal-ordering constant, we get for each

bosonic direction the usual result

q¡
1
24

∞∏

r=1

1

1− qr =
1

´(it)
. (2.14)

The only operatorial zero mode is the momentum p̂0 appearing in the X0 ¯eld; the

distance ~r between the branes appears instead as a numerical parameter in the expan-

sion of the ~X ¯elds. Since the 0-th direction is compacti¯ed according to eq. (2.2), the

4In ref. [32] some interesting words of caution were raised regarding the use of ζ-function regularization

for the string with the present boundary conditions.
5We consider a given orientation of the string.

– 6 –
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eigenvalues of p0 are quantized, see eq. (2.9): p0 = 2¼n/L. The corresponding trace,

which in the non-compact case is given by an integral, requires therefore the discrete sum

(1/L)
∑

n.

Taking into account also the zero-mode contributions to L0 and the relation, eq. (2.13),

between q and t the free energy eq. (2.12) is expressed as

F =

∫ ∞

0

dt

2t

∞∑

n=¡∞
e
¡2πt

(
4π2α′ n2

L2 + R2

4π2α′
)(

1

´(it)

)d¡2

, (2.15)

where the exponent of d− 2 for the non-zero mode trace is due to the fact that the ghost

contribution cancels exactly the non-zero modes of two bosonic directions. In the e®ective

interpretation, these two coordinates are the time one, X 0, and one of the spatial ones; as

a result, d− 2 spatial transverse coordinates are left.

We can now Poisson re-sum over the integer n labelling the momentum:

∞∑

n=¡∞
exp

(
−8¼3®′ t

L2
n2

)
=

√
L2

8¼2®′ t

∞∑

m=¡∞
exp

(
− L2

8¼®′ t
m2

)
. (2.16)

In this dual expansion, the integer m labels the topologically distinct sectors in which the

string world-sheet winds m times around the compact time direction. Notice that winding

in one direction or the opposite yields the same contribution, as only m2 occurs. We can

thus write

F = F (0) + 2
∞∑

m=1

F (m) , (2.17)

with

F (m) =
L√

8¼2®′

∫ ∞

0

dt

2t
3
2

e¡
L2 m2

8πα′ t¡t
R2

2πα′

(
1

´(it)

)d¡2

. (2.18)

In the case m = ±1, the string end-points trace out in the target space the two Polyakov

loops, and the string world-sheet has exactly the topology of the cylinder bordered by the

Polyakov loop whose °uctuations are assumed to be described by the “e®ective” Nambu-

Goto theory in the usual treatment. Let us see how our computation, in this topological

subsector, is related to such a description.

First of all, in eq. (2.18) we expand in series of q the in¯nite products in eqs. (2.14),

(2.15): ( ∞∏

r=1

1

1− qr

)d¡2

=

∞∑

k=0

wkq
k (2.19)

(for d = 3 we have simply wk = pk, the number of partitions of the integer k). Having done

this, the integration over t in eq. (2.18) can be performed6 obtaining, in the case m 6= 0,

F (m) =
1

2|m|
∑

k

wke
¡|m|LEk(R) , (m 6= 0) , (2.21)

6In the case m 6= 0 we use the integral
∫ ∞

0

dt

t
3
2

e¡
α2

t
¡β2t =

√
π

|α| e
¡2|α| |β| (2.20)

with α2 = L2m2/(8πα′) and β2 = R2

2πα′ + 2π(k − d¡2
24

).

– 7 –
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where

Ek(r) =
R

4¼®′

√
1 +

4¼2®′

R2

(
k − d− 2

24

)
(2.22)

are nothing else but the Nambu-Goto energy levels of Alvarez and Arvis, see eq. (1.2). In

particular, from the m = ±1 cases we get

2F (1) = Z(R) , (2.23)

where Z(R) is the Nambu-Goto partition function of eq. (1.3).

The case m = 0 corresponds exactly (apart from the volume factor L being ¯nite) to

the usual result one gets in the non-compact situation:

F (0) = L

∫ ∞

0

dt

2t

1√
8¼2®′t

(
1

´(it)

)d¡2

e¡
tR

2πα′ , (2.24)

see for instance [33]. Using the expansion eq. (2.19), the integration over t can be easily

carried out, with the result

F (0) = −L
∑

k

wkEk(R) . (2.25)

2.2 Modular transformation to the closed channel

Changing integration variable to s = 1/t and taking advantage of the modular properties

of the Dedekind eta function:

´(i/s) = s
1
2 ´(is) (2.26)

the expression eq. (2.18) of the free energy in the m-th sector can be written as

F (m) =
L√

8¼2®′

∫ ∞

0

ds

2s
s

3¡d
2 e¡

L2 m2

8πα′ s¡
R2

2πα′ s

(
1

´(is)

)d¡2

=
L√

8¼2®′

∑

k

wk

∫ ∞

0

ds

2s
s

3¡d
2 e
¡
[
L2 m2

8πα′ +2π(k¡ d¡2
24 )

]
s¡ R2

2πα′ s . (2.27)

In terms of the variable z = ¼®′s/2 this becomes

F (m) =
L√

8¼2®′

(
2

¼®′

) 3¡d
2 ∑

k

wk

∫ ∞

0

dz

2z
z

3¡d
2 e¡M

2(m,k) z¡R2

4z , (2.28)

with

M2(m, k) =
4

®′

(
k − d− 2

24

)
+

(
mL

2¼®′

)2

(2.29)

= (mT L)2

[
1 +

8¼

T L2m2

(
k − d− 2

24

)]
. (2.30)

In the second line above we wrote the expression in such a way that it can be easily

compared, for m = 1, with [13, eq. (C5)], see the discussion at the end of this section.

– 8 –
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The integral appearing in eq. (2.28) is proportional to the propagator of a scalar ¯eld of

mass M2 over the distance ~R between the two D0-branes along the d−1 spatial directions.

Indeed, such a propagator is given by

G(R;M) =

∫
dd¡1p

(2¼)d¡1

ei~p¢~R

p2 +M2
=

∫ ∞

0
dz

∫
dd¡1p

(2¼)d¡1
e¡z(p

2+M2)+i~p¢~r

=
1

(4¼)
d¡1

2

∫ ∞

0

dz

z
z

3¡d
2 e¡M

2z¡R2

4z =
1

2¼

(
M

2¼R

) d¡3
2

K d¡3
2

(MR) . (2.31)

The free energy eq. (2.28) can therefore be seen as a collection of tree-level exchange

diagrams between the D0-branes; the exchanged particles have squared mass M 2(k,m)

given by eq. (2.30).

This picture nicely agrees with what dimensional reduction and the so called Svetitsky-

Ya®e conjecture [34] suggest on the behaviour of the Polyakov loop correlator as the de-

con¯nement temperature is approached from below. According to this conjecture, in the

vicinity of the de-con¯nement point, if the transition is continuous, a d-dimensional LGT

with gauge group G can be e®ectively described by a d − 1 dimensional spin model with

symmetry group the center of G. In this representation the Polyakov loops become the

spins of the underlying model and the Polyakov loop correlator is nothing else than the

standard spin-spin correlator.7 This correlator will depend on the symmetry group and

will be in general very complicated; however, at large distance it will be dominated by

the contribution of the lowest mass particle in the spectrum, whose contribution to the

correlation function, in d−1 dimensions, will be represented exactly by the Bessel function

K d¡3
2

(mR), with m ≡M(1, 0) being the mass of this particle. Thus the Nambu-Goto string

description is fully compatible with our qualitative understanding of the high temperature

behaviour of the gauge theory.

Collecting all the numerical factors, we can write

F (m) = L
T 2

0

4

∑

k

wkG (R;M(m, k)) . (2.32)

where T0 is the 0-brane tension, in accordance with the standard result for the tension Tp
of Dp-branes in bosonic string theory, see for instance [33, 36]:

Tp =

√
¼

2
d
2
¡5

(
2¼
√
®′
) d

2
¡2¡p

, (2.33)

which, for p = 0, gives

T 2
0 = 8¼

( ¼
T
) d

2
¡2

. (2.34)

The exchanged states are closed string states, with k representing the total oscillator num-

ber, and m the wrapping number of the string around the compact time direction.

7Notice as a side remark that the closed string channel discussed here is the one which better describes

the high temperature behaviour of the Polyakov loop correlators where L is in general much smaller than

the interquark distance R.
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The modular transformation to the closed channel of the case m = 1, i.e., for the

NG partition function eq. (1.3), was performed in [13]; let us compare our ¯ndings to

that reference. The mass M of the ¯elds exchanged by the D0 branes, see eq. (2.30),

coincide for m = 1 with the “closed string energies” reported in [13, eq. (C5)]. With this

identi¯cation eqs. (2.31) and (2.32) exactly coincide with [13, eq. (3.2)]. This allows to

relate the “transition matrix elements” reported in [13, eq. (C.6)] with the tension T0 of

the two D0 branes.

It is clear from the above identi¯cations that our derivation is fully equivalent to the

original one by LÄuscher and Weisz [13]. The only advantage of our formulation is that it

allows us to describe the result of this mathematical transformation directly in the closed

string formulation, as we will see in the next section, sheding some more light on the string

interpretation of the transformation.

2.3 Closed string interpretation

PSfrag replacements
σ

σ

τ

τ

Figure 2: The interchange

σ ↔ τ maps the open string

1-loop free energy (upper) to

tree level propagation of a clo-

sed string (lower).

Let us now re-derive the Nambu-Goto partition function in

the closed string channel. This requires the introduction of

the notion of “boundary state”, which plays a major role in

the following, and could be relevant for the stringy treatment

of other gauge geometries.8

The modular transformation of the cylinder amplitude

corresponds to the interchange of the world-sheet coordinates

¾ ↔ ¿ , so that the loop of an open string gets re-interpreted

as the tree level propagation of a closed string between two

boundary states representing the two D0-branes:

F = 〈B;~0 |D|B; ~R 〉 , (2.35)

where D is the closed string propagator, see below. An ex-

plicit expression of the boundary states makes it possible to

derive the closed-channel expression eq. (2.27) of the free

energy F entirely within the closed string formalism.

The closed string ¯elds X i(¿, ¾) in the spatial directions have the standard mode

expansion

Xi(¿, ¾) = x̂i + ®′ p̂i ¿ + i

√
®′

2

∑

n6=0

(
®in
n

e¡in(τ+σ) +
®̃in
n

e¡in(τ¡σ)

)
. (2.36)

In the compact time direction, which has the periodicity eq. (2.2), the zero-mode sector is

modi¯ed:

X0(¿, ¾) = x̂0 + ®′ p̂0 ¿ +
m̂L

2¼
¾ + non-zero modes , (2.37)

where the momentum operator p̂0 has quantized eigenvalues 2¼n/L and m̂ has integer

eigenvalues m corresponding to the winding number of the string in the time direction:

X0(¿, ¾ + 2¼) = X0(¿, ¾) +mL . (2.38)

8See [35] for a list of references in the context of string and superstring theory; ref. [36] is a very useful

review. See [37] for a discussion of boundary states on compact target spaces, which is relevant here for the

X0 direction. In ref. [38] we give some basic references regarding boundary states in the context of CFT’s.
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The left- and right-moving oscillators ®Mn and ®̃Mn , with M = (0, i), satisfy the algebra

[
®Mm , ®

N
n

]
= m±m+n,0±

MN (2.39)

(and the analogous one for the right-movers). The left-moving and right-moving Virasoro

generators L0 and L̃0 are given by

L0 =
®′

4

∑

i

(p̂i)2 +
®′

4

(
p̂0 +

m̂L

2¼®′

)2

+
∞∑

n=1

®¡n · ®n −
d

24
, (2.40)

L̃0 =
®′

4

∑

i

(p̂i)2 +
®′

4

(
p̂0 − m̂L

2¼®′

)2

+

∞∑

n=1

®̃¡n · ®̃n −
d

24
, (2.41)

where we included the normal ordering constants. A standard form of the closed string

propagator is given by
®′

4¼

∫
d2z

|z|2 z
L0+Lgh.

0 ¹zL̃0+L̃gh.
0 , (2.42)

where Lgh.
0 and L̃gh.

0 are the Virasoro generators for the ghost system.

The boundary state |B; ~R〉 appearing in eq. (2.35) represents in the closed string

language a D0-brane located in its transverse directions at ~R. It is a state in the Hilbert

space of the closed string which inserts a boundary in the world-sheet at ¿ = 0 and

enforces the closed string counterparts of the open string boundary conditions eqs. (2.5),

(2.6), Neumann along the time, Dirichlet along the spatial directions:

∂τX
0(¾, ¿)

∣∣
τ=0
|B; ~R〉 = 0 ,

(
Xi(¾, ¿) −Ri

)∣∣
τ=0
|B; ~R〉 = 0 . (2.43)

In terms of the mode expansions eq. (2.36) and eq. (2.37), these conditions become

(
®0
n + ®̃0

¡n
)
|B; ~R 〉 = 0 , n̂|B; ~R 〉 = 0 (2.44)

in the time directions, and

(
®in − ®̃i¡n

)
|B; ~R 〉 = 0 ,

(
x̂i − ri

)
|B; ~R 〉 = 0 . (2.45)

in the spatial ones. It follows from these conditions that the boundary state also identi¯es

the left- and right-moving Virasoro generators:

(
L0 − L̃0

)
|B; ~R 〉 = 0 . (2.46)

Requiring the BRST invariance of the boundary state implies that it also has a component

in the ghost sector; for the details we refer, for instance, to [36]. Let us just notice that the

boundary state identi¯es also the left- and right-moving ghost Virasoro generator Lgh
0 , L̃gh

0 ,

analogously to eq. (2.46).

The solution to these conditions has the form

|B; ~R 〉 = N0 |B(0); ~R 〉|Bn.z.〉|Bgh.〉 , (2.47)
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where N0 is a normalization to be ¯xed. The non-zero-mode part of the boundary state

reads explicitly

|Bn.z.〉 = exp

{
−
∞∑

n=1

1

n

(
®0
¡n®̃

0
¡n −

∑

i

®i¡n · ®̃i¡n

)}
|0, 0̃〉 . (2.48)

Since the Neumann conditions eq. (2.44) leave the winding m undetermined, the zero-

mode part of the boundary state decomposes as |B (0); ~R 〉 =
∑

m |B(0); ~R ;m〉, the m-th

component belonging to the sub-sector of the Hilbert space that describes strings wrapped

m times around the time circle. We have

|B(0); ~R ;m〉 = ±(~̂x − ~R)|n = 0,m; ~p = 0〉 =

∫
dd¡1p

(2¼)d¡1
e¡i~p¢~R|n = 0,m; ~p〉 , (2.49)

where in the second step we made explicit the ±-function along the Dirichlet directions and

introduced momentum eigenstates9 |~p〉.
Taking into account the identi¯cation of the left- and right-moving Virasoro generators

on the boundary states, the amplitude eq. (2.35) becomes, introducing |z| = exp(−¼s),

F =
¼®′

2

∫ ∞

0
ds 〈B;~0 |e¡2πs(L0+Lgh.

0 )|B; ~R 〉 . (2.50)

The matrix element for the non-zero mode sector of the above expression can be easily

computed using the oscillator algebra eq. (2.39) and the properties of coherent-like states

such as the ones appearing in eq. (2.48), see [36]. The result is

〈Bn.z.|e¡2πs(
∑∞
k=1 α¡k¢αk¡ d

24 )|Bn.z.〉 = e
πds
12

∞∏

n=1

(
1

1− e¡2πns

)d
=

(
1

´(is)

)d
. (2.51)

The matrix element in the ghost sector e®ectively cancels out the contributions of the

bosonic non-zero modes of two directions:

〈Bgh.|e¡2πsLgh.
0 |Bgh.〉 = ´2(is) . (2.52)

The matrix element in the zero-mode sector, using eq. (2.49) and the 0-mode part of L0

as given in eq. (2.40), becomes, for each winding m,

∫
dd¡1q

(2¼)d¡1

∫
dd¡1p

(2¼)d¡1
〈n = 0,m; ~q|e¡

πα′s
2

(∑
i(p̂

i)2+(p̂0+ m̂L
2πα′ )

2
)
¡i~p¢~R|n = 0,m; ~p〉 =

= (2¼2®′)¡
d¡1

2 e¡
m2L2s
8πα′ ¡

r2

2πα′s , (2.53)

where in the last step we used the orthogonality of the momentum and winding eigenstates,

and performed the remaining gaussian integration.

9These states we normalize to 〈~k|~p〉 = (2π)d¡1δd¡1(~k − ~p). The quantized momentum and winding |n〉
and |m〉 in the time direction are instead simply normalized to the Kronecker δ.
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The amplitude F =
∑

mF (m) receives contributions from all winding sectors and,

collecting all the ingredients, we ¯nd

F (m) = N 2
0 (2¼2®′)

1¡d
2
¼®′

2

∫ ∞

0

ds

s
s

3¡d
2 e¡

m2L2 s
8πα′ ¡

R2

2πα′s

(
1

´(is)

)d¡2

. (2.54)

The boundary state normalization has to be chosen so as to agree with the modular trans-

formation, eq. (2.27), of the open channel cylinder trace. This ¯xes

N0 =
T0

2

√
L , (2.55)

where the tension Tp of the bosonic Dp-brane in the non-compact theory was already given

in eq. (2.33).

3. Conclusions

In this paper we have shown how to derive the Nambu-Goto e®ective string from a covariant

quantization of the bosonic string in d dimensions, which is tantamount to the Polyakov

formulation if one neglects the Liouville ¯eld.

As we noticed in the introduction, for large enough values of R and L the Nambu-

Goto string is in very good agreement with the results of Montecarlo simulations for various

gauge theories and in various dimensions, see for instance ¯gure 3 and 4 (taken with small

changes from [16]) referring to the Z2 gauge theory in (2+1) dimensions. Work is in

progress [39] to quantify this agreement also at the level of the string spectrum, and the

preliminary results are very favourable to the Nambu-Goto e®ective model. This suggests

that indeed at large distance one can neglect the Liouville mode and still correctly describe

the °uctuations of the °ux tube which joins together the quark–anti-quark pair by standard

bosonic string theory. As it has been observed by several groups [14, 16 – 18], and as it is

clearly visible in ¯gures 3 and 4, at shorter distances the Montecarlo data show a drastic

deviation from the Nambu-Goto predictions. It would be interesting to understand if

this signals the breakdown of the string picture itself, or if it is possible to describe these

deviations in a string framework. In this respect, one would like to understand whether also

the deviations from the Nambu-Goto behaviour follow a universal pattern. Preliminary

results indicate that this is indeed the case for the Ising model and the SU(2) models in

(2+1) dimensions, see [15]. A similar, but not completely coincident behaviour has been

observed for the SU(3) model [15, 16]. Further numerical studies, auspiciously in a wider

range of models, are needed to completely clarify this point. Nevertheless, we can ask

ourselves which stringy mechanism could possibly be responsible for these deviations. A

rôle could be played by contributions from higher genus surfaces bounded by the Polyakov

loops; our formalism could help to test this possibility.

A second interesting possibility is that at short distance one is not any more allowed

to neglect the Liouville mode in the analysis, and should resort to the full Polyakov for-

mulation. To this purpose, the preliminary numerical results of [39] seem to suggest that

the modi¯cation for shorter scales consists basically in a shift of the spectrum, in a way

compatible with the e®ect of an extra degree of freedom.
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Figure 3: Montecarlo results for the Polyakov loop correlators in the (2+1) dimensional gauge

Ising model. The data are taken at a fixed value of the lattice in the time direction: L = 80

(which corresponds to a very low temperature T = Tc/10) and a varying size of the interquark

distance (10 < R < 80). In the figure is plotted the deviation of Γ (the ratio G(R + 1)/G(R) of

two correlators shifted by one lattice spacing, see [16] for details) with respect to the Nambu-Goto

string expectation ΓNG (which with this definition of observables corresponds to the straight line

at zero). Notice the remarkable agreement in the range 24 < R < 80, which is not the result of a

fitting procedure: in the comparison reported in the figure there is no free parameter (data taken

from ref. [14] and [16]).

At ¯rst sight, including another degree of freedom seems to contradict the expected

behaviour of the °ux tube, whose relevant d.o.f. should be the d− 2 transverse oscillations

only. For this reason, after the discussions of the eighties and early nineties, no standard

consistent quantization of the bosonic string seemed suited to describe the °ux tube dy-

namics at all scales R: in d < 26, all exhibit unwanted features,10 including the Polyakov

string, which has an extra dimension parametrized by the Liouville ¯eld. Some interest-

ing alternative proposals were made, such as, for instance, the e®ective string theory of

Polchinski and Strominger [40], but a clear picture and a single candidate did not emerge.

More recently, in particular through the work of Polyakov [41] and the progresses

made in supersymmetric Yang-Mills theory through the AdS/CFT correspondence [42],

a di®erent conceptual picture has been developed. The extra dimension parametrized by

the Liouville ¯eld should represent the renormalization scale of the quantum gauge theory,

rather than another space-time direction, thus evading the objection mentioned above to

the relevance of the Polyakov model for the QCD string.

10In a non-covariant quantization of the free bosonic string Lorentz symmetry is broken, while in covariant

quantization extra longitudinal modes appear.
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Figure 4: Montecarlo results for the Polyakov loop correlators in the (2+1) dimensional gauge

Ising model. The data are taken at a fixed value R = 32 of the interquark distance and a varying size

(8 < L < 24) of the lattice in the time directions. In the figure is plotted the deviation of Γ (defined

as in the previous figure) with respect to the asymptotic free string expectation ΓLO (which with

this definition of observables corresponds to the straight line at zero). The curve is the Nambu-Goto

prediction for this observable. Notice the remarkable agreement in the range 16 < L < 24, which

as for the previous figure is not the result of a fitting procedure: in the comparison reported in the

figure there is no free parameter (taken from [16, figure 3]).

This paper aims not to tackle the di±cult analysis of the relation between the full-

°edged Polyakov formulation and gauge theories. Yet, having retrieved the large-R be-

haviour described by the Nambu-Goto e®ective model (and favoured by the numerical

simulations) in a ¯rst-order formulation à la Polyakov, but neglecting the Liouville ¯eld,

might prove useful in discussing the modi¯cations due to its inclusion.
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