216 research outputs found
Direct observation of particle-hole mixing in the superconducting state by angle-resolved photoemission
Particle-hole (p-h) mixing is a fundamental consequence of the existence of a
pair condensate. We present direct experimental evidence for p-h mixing in the
angle-resolved photoemission (ARPES) spectra in the superconducting state of
Bi_2Sr_2CaCu_2O_{8+\delta}. In addition to its pedagogical importance, this
establishes unambiguously that the gap observed in ARPES is associated with
superconductivity.Comment: 3 pages, revtex, 4 postscript figure
Photoemission view of electron fractionalization in quasi-one dimensional metal LiMoO
We report Luttinger liquid line shapes better revealed by new angle resolved
photoemission data taken with a much improved angle resolution on a
quasi-1-dimensional metal LiMoO. The new data indicate a
larger spinon velocity than our previous lower resolution data indicated.Comment: submitted to SCES '0
ARPES Study of X-Point Band Overlaps in LaB and SmB - Contrast to SrB and EuB
In contrast to our recent finding of an X-point band gap in divalent
hexaborides, we report here that angle resolved photoemission spectroscopy
(ARPES) data shows that the gap is absent for trivalent LaB and is absent
or nearly so for mixed valent SmB. This finding demonstrates a nontrivial
evolution of the band structure from divalent to trivalent hexaborides.Comment: submitted to SCES '0
S and D Wave Mixing in High Superconductors
For a tight binding model with nearest neighbour attraction and a small
orthorhombic distortion, we find a phase diagram for the gap at zero
temperature which includes three distinct regions as a function of filling. In
the first, the gap is a mixture of mainly -wave with a smaller extended
-wave part. This is followed by a region in which there is a rapid increase
in the -wave part accompanied by a rapid increase in relative phase between
and from 0 to . Finally, there is a region of dominant with a
mixture of and zero phase. In the mixed region with a finite phase, the
-wave part of the gap can show a sudden increase with decreasing temperature
accompanied with a rapid increase in phase which shows many of the
characteristics measured in the angular resolved photoemission experiments of
Ma {\em et al.} in Comment: 12 pages, RevTeX 3.0, 3 PostScript figures uuencoded and compresse
Evolution of the pairing pseudogap in the spectral function with interplane anisotropy
We study the pairing pseudogap in the spectral function as a function of
interplane coupling. The analytical expressions for the self-energy in the
critical regime are obtained for any degree of anisotropy. The frequency
dependence of the self-energy is found to be qualitatively different in two and
three dimensions, and the crossover from two to three dimensional behavior is
discussed. In particular, by considering the anisotropy of the Fermi velocity
and gap along the Fermi surface, we can qualitatively explain recent
photoemission experiments on high temperature superconductors concerning the
temperature dependent Fermi arcs seen in the pseudogap phase.Comment: 20 pages, revtex, 5 encapsulated postscript figures include
High-resolution Ce 3d-edge resonant photoemission study of CeNi_2
Resonant photoemission (RPES) at the Ce 3d -> 4f threshold has been performed
for alpha-like compound CeNi_2 with extremely high energy resolution (full
width at half maximum < 0.2 eV) to obtain bulk-sensitive 4f spectral weight.
The on-resonance spectrum shows a sharp resolution-limited peak near the Fermi
energy which can be assigned to the tail of the Kondo resonance. However, the
spin-orbit side band around 0.3 eV binding energy corresponding to the f_{7/2}
peak is washed out, in contrast to the RPES spectrum at the Ce 3d -> 4f RPES
threshold. This is interpreted as due to the different surface sensitivity, and
the bulk-sensitive Ce 3d -> 4f RPES spectra are found to be consistent with
other electron spectroscopy and low energy properties for alpha-like
Ce-transition metal compounds, thus resolves controversy on the interpretation
of Ce compound photoemission. The 4f spectral weight over the whole valence
band can also be fitted fairly well with the Gunnarsson-Schoenhammer
calculation of the single impurity Anderson model, although the detailed
features show some dependence on the hybridization band shape and (possibly) Ce
5d emissions.Comment: 4 pages, 3 figur
Superconducting gap in the presence of bilayer splitting in underdoped Bi(Pb)2212
The clearly resolved bilayer splitting in ARPES spectra of the underdoped
Pb-Bi2212 compound rises the question of how the bonding and antibonding sheets
of the Fermi surface are gapped in the superconducting state. Here we compare
the superconducting gaps for both split components and show that within the
experimental uncertainties they are identical. By tuning the relative intensity
of the bonding and antibonding bands using different excitation conditions we
determine the precise {\bf k}-dependence of the leading edge gap. Significant
deviations from the simple cos()-cos() gap function for the
studied doping level are detected.Comment: 5 pages, 4 figures (revtex4
ARPES study of Pb doped Bi_2Sr_2CaCu_2O_8 - a new Fermi surface picture
High resolution angle resolved photoemission data from Pb doped
Bi_2Sr_2CaCu_2O_8 (Bi2212) with suppressed superstructure is presented.
Improved resolution and very high momentum space sampling at various photon
energies reveal the presence of two Fermi surface pieces. One has the hole-like
topology, while the other one has its van Hove singularity very close to
(pi,0), its topology at some photon energies resembles the electron-like piece.
This result provides a unifying picture of the Fermi surface in the Bi2212
compound and reconciles the conflicting reports.Comment: 4 pages, 4 figure
Inelastic lifetimes of confined two-component electron systems in semiconductor quantum wire and quantum well structures
We calculate Coulomb scattering lifetimes of electrons in two-subband quantum
wires and in double-layer quantum wells by obtaining the quasiparticle
self-energy within the framework of the random-phase approximation for the
dynamical dielectric function. We show that, in contrast to a single-subband
quantum wire, the scattering rate in a two-subband quantum wire contains
contributions from both particle-hole excitations and plasmon excitations. For
double-layer quantum well structures, we examine individual contributions to
the scattering rate from quasiparticle as well as acoustic and optical plasmon
excitations at different electron densities and layer separations. We find that
the acoustic plasmon contribution in the two-component electron system does not
introduce any qualitatively new correction to the low energy inelastic
lifetime, and, in particular, does not produce the linear energy dependence of
carrier scattering rate as observed in the normal state of high-
superconductors.Comment: 16 pages, RevTeX, 7 figures. Also available at
http://www-cmg.physics.umd.edu/~lzheng
Mass-renormalized electronic excitations at (, 0) in the superconducting state of
Using high-resolution angle-resolved photoemission spectroscopy on
, we have made the first observation of a
mass renormalization or "kink" in the E vs. dispersion relation
localized near . Compared to the kink observed along the nodal
direction, this new effect is clearly stronger, appears at a lower energy near
40 meV, and is only present in the superconducting state. The kink energy scale
defines a cutoff below which well-defined quasiparticle excitations occur. This
effect is likely due to coupling to a bosonic excitation, with the most
plausible candidate being the magnetic resonance mode observed in inelastic
neutron scattering
- …