48 research outputs found

    Phase Behavior of Aqueous Na-K-Mg-Ca-CI-NO3 Mixtures: Isopiestic Measurements and Thermodynamic Modeling

    Get PDF
    A comprehensive model has been established for calculating thermodynamic properties of multicomponent aqueous systems containing the Na{sup +}, K{sup +}, Mg{sup 2+}, Ca{sup 2+}, Cl{sup -}, and NO{sub 3}{sup -} ions. The thermodynamic framework is based on a previously developed model for mixed-solvent electrolyte solutions. The framework has been designed to reproduce the properties of salt solutions at temperatures ranging from the freezing point to 300 C and concentrations ranging from infinite dilution to the fused salt limit. The model has been parameterized using a combination of an extensive literature database and new isopiestic measurements for thirteen salt mixtures at 140 C. The measurements have been performed using Oak Ridge National Laboratory's (ORNL) previously designed gravimetric isopiestic apparatus, which makes it possible to detect solid phase precipitation. Water activities are reported for mixtures with a fixed ratio of salts as a function of the total apparent salt mole fraction. The isopiestic measurements reported here simultaneously reflect two fundamental properties of the system, i.e., the activity of water as a function of solution concentration and the occurrence of solid-liquid transitions. The thermodynamic model accurately reproduces the new isopiestic data as well as literature data for binary, ternary and higher-order subsystems. Because of its high accuracy in calculating vapor-liquid and solid-liquid equilibria, the model is suitable for studying deliquescence behavior of multicomponent salt systems

    Vagal control moderates the association between endothelial function and PTSD symptoms in women with T2DM

    No full text
    Background: Individuals with posttraumatic stress disorder (PTSD) are more likely to present with metabolic diseases such as type-2 diabetes mellitus (T2DM), and cardiovascular dysfunction has been implicated in this link. These diseases disproportionately affect women and individuals exposed to chronic environmental stressors (e.g., community violence, poverty). We examined associations among PTSD, cardiovascular indices, and metabolic function in highly trauma-exposed Black women with T2DM. Methods: Participants (N = 80) were recruited for a follow-up study of stress and T2DM as part of the Grady Trauma Project. PTSD symptoms were assessed with the Clinician Administered PTSD Scale (CAPS-IV). Cardiovascular indices included heart rate (HR), blood pressure (BP), respiratory sinus arrhythmia (RSA), and endothelial function (assessed via flow-mediated dilation; FMD). An oral glucose tolerance test was used as an indicator of metabolic function. Results: Of the cardiovascular indices, only FMD was significantly associated with PTSD symptoms (CAPS Avoidance symptoms; β = −0.37, p = .042), and glucose tolerance (β = −0.44, p = .019), controlling for age and body mass index. The association between FMD and PTSD Avoidance was moderated by RSA such that the effect of FMD was only significant at low levels of RSA (simple slopes β = −0.87, p = .004). Conclusions: Our results indicate that endothelial function is significantly related to PTSD and glucose tolerance, over and above other cardiovascular measures (HR, BP, RSA). Further, our results suggest that low RSA may be a risk factor for the link between poor endothelial function and PTSD in women with T2DM. © 2022 The AuthorsOpen access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore