170 research outputs found

    Investigation of the Neutron Form Factors by Inclusive Quasi-Elastic Scattering of Polarized Electrons off Polarized 3^{3}He: A Theoretical Overview

    Full text link
    The theory of quasi-elastic inclusive scattering of polarized leptons off polarized 3^3He is critically reviewed and the origin of different expressions for the polarized nuclear response function appearing in the literature is explained. The sensitivity of the longitudinal asymmetry upon the neutron form factors is thoroughly investigated and the role played by the polarization angle for minimizing the proton contribution is illustrated.Comment: Phys. Rev C in press; 9 figs. (available upon request

    A longitudinal cross-over study of serum cholesterol and lipoproteins in rabbits fed on semipurified diets containing either casein or soybean protein

    Get PDF
    1. Two groups, each of six rabbits, were fed on semi-purified diets containing either 400 g casein or 400 g soya-bean protein/kg for 20 d and then the diets of the two groups were crossed-over. 2. Just before the cross-over, the serum cholesterol concentration (mean ± SE) was 3068 ± 592 and 800 ± 143 mg/l for the groups fed on casein and soya-bean protein respectively. 3. Changes in the serum cholesterol concentration were observed 1 d after crossing-over the diets. By 10 d, the cholesterol levels in the two groups had also crossed-over. 4. The changes in serum cholesterol level after the cross-over were reflected in the very-low-density lipoproteins (VLDL) and low-density lipoproteins (LDL). 5. Lipoprotein protein concentrations in the LDL changed in the same way as cholesterol. In the VLDL however, the protein concentration decreased in both groups after the change in diet. 6. The cholesterol:protein values for the LDL and VLDL markedly increased in the rabbits changed from the soya-bean-protein diet to the casein diet, reaching a maximum 2 d after the cross-over. In the animals switched from casein to soya-bean protein, the values progressively declined. 7. The source of dietary protein exerts a rapid effect on the composition of both the VLDL and LDL which is proposed to be attributed to changes in the number and size of lipoprotein particles

    Hydrodynamic simulations of classical novae; CO and ONe white dwarfs are supernova ia progenitors

    Get PDF
    Cataclysmic Variables (CVs) and Symbiotic Binaries are close (or not so close) binary star systems which contain both a white dwarf (WD) primary and a larger cooler secondary star that typically fills its Roche Lobe. The cooler star is losing mass through the inner Lagrangian point of the binary and a fraction of this material is accreted by the WD. Here we report on our hydrodynamic studies of the thermonuclear runaway (TNR) in the accreted material that ends in a Classical Nova explosion. We have followed the evolution of the TNRs on both carbon-oxygen (CO) and oxygen-neon (ONe) WDs. We report on 3 studies in this paper. First, simulations in which we accrete only solar matter using NOVA (our 1-D, fully implicit, hydro code). Second, we use MESA for similar studies in which we accrete only Solar matter and compare the results. Third, we accrete solar matter until the TNR is ongoing and then switch the composition in the accreted layers to a mixed composition: either 25% WD and 75% solar or 50% WD and 50% Solar. We find that the amount of accreted material is inversely proportional to the initial 12C abundance (as expected). Thus, accreting solar matter results in a larger amount of accreted material to fuel the outburst; much larger than in earlier studies where a mixed composition was assumed from the beginning of the simulation. Our most important result is that all these simulations eject significantly less mass than accreted and, therefore, the WD is growing in mass toward the Chandrasekhar Limit

    Carbon-Oxygen Classical Novae Are Galactic 7Li Producers as well as Potential Supernova Ia Progenitors

    Get PDF
    We report on studies of classical nova (CN) explosions where we follow the evolution of thermonuclear runaways (TNRs) on carbon-oxygen (CO) white dwarfs (WDs). We vary both the mass of the WD (from 0.6 M o˙ to 1.35 M o˙) and the composition of the accreted material. Our simulations are guided by the results of multidimensional studies of TNRs in WDs, which find that sufficient mixing with WD core material occurs after the TNR is well underway, and levels of enrichment are reached that agree with observations of CN ejecta abundances. We use NOVA (our one-dimensional hydrodynamic code) to accrete solar matter until the TNR is ongoing and then switch to a mixed composition (either 25% WD material and 75% solar or 50% WD material and 50% solar). Because the amount of accreted material is inversely proportional to the initial 12C abundance, by first accreting solar matter the amount of material taking part in the outburst is larger than in those simulations where we assume a mixed composition from the beginning. Our results show large enrichments of 7Be in the ejected gases, implying that CO CNe may be responsible for a significant fraction (∼100 M o˙) of the 7Li in the galaxy (∼1000 M o˙). Although the ejected gases are enriched in WD material, the WDs in these simulations eject less material than they accrete. We predict that the WD is growing in mass as a consequence of the accretion-outburst-accretion cycle, and CO CNe may be an important channel for SN Ia progenitors

    Carbon-oxygen and oxygen-neon classical novae are Galactic7Li producers

    Get PDF
    We report on studies of classical nova (CN) explosions where we follow the evolution of thermonuclear runaways (TNRs) on carbon oxygen (CO) and oxygen-neon (ONe) white dwarfs (WDs). Our simulations are guided by the results of multi-dimensional studies of TNRs in WDs which find that sufficient mixing with WD core material occurs after the TNR is well underway, reaching levels of enrichment that agree with observations of CN ejecta abundances. Our results show large enrichments of7Be in the ejected gases implying that CNe may be responsible for a significant fraction (∼ 100 M) of the7Li in the galaxy (∼1000 M). In addition, the WDs in these simulations are ejecting less material than they accrete. We, therefore, predict that the WDs can grow in mass as a consequence of the TNR and CNe may be an important channel of Supernova Ia progenitors

    Discovery and Observations of ASASSN-13db, an EX Lupi-Type Accretion Event on a Low-Mass T Tauri Star

    Get PDF
    We discuss ASASSN-13db, an EX Lupi-type ("EXor") accretion event on the young stellar object (YSO) SDSS J051011.01−-032826.2 (hereafter SDSSJ0510) discovered by the All-Sky Automated Survey for SuperNovae (ASAS-SN). Using archival photometric data of SDSSJ0510 we construct a pre-outburst spectral energy distribution (SED) and find that it is consistent with a low-mass class II YSO near the Orion star forming region (d∼420d \sim 420 pc). We present follow-up photometric and spectroscopic observations of the source after the ΔV∼−\Delta V \sim-5.4 magnitude outburst that began in September 2013 and ended in early 2014. These data indicate an increase in temperature and luminosity consistent with an accretion rate of ∼10−7\sim10^{-7} M⊙\rm{M}_\odot yr−1^{-1}, three or more orders of magnitude greater than in quiescence. Spectroscopic observations show a forest of narrow emission lines dominated by neutral metallic lines from Fe I and some low-ionization lines. The properties of ASASSN-13db are similar to those of the EXor prototype EX Lupi during its strongest observed outburst in late 2008.Comment: 14 pages, 4 figures, 1 table. Updated May 2014 to reflect changes in the final version published in ApJL. Photometric data presented in this submission are included as ancillary files. For a brief video explaining this paper, see http://youtu.be/yRCCrNJnvt

    Hydrodynamic simulations of classical novae: Accretion onto CO white dwarfs as Sn Ia progenitors

    Get PDF
    We report on our continuing studies of Classical Nova explosions by following the evolution of thermonuclear runaways (TNRs) on carbon-oxygen (CO) white dwarfs (WDs). We have varied both the mass of the WD and the composition of the accreted material. Rather than assuming that the material has mixed from the beginning, we now rely on the results of the multidimensional (multi-D) studies of mixing as a consequence of the TNRs in WDs that accreted only Solar matter. The multi-D studies find that mixing with the core occurs after the TNR is well underway and reach enrichment levels in agreement with observations of the ejecta abundances. We report on 3 studies in this paper. First, simulations in which we accrete only Solar matter with NOVA (our 1-D, fully implicit, hydro code). Second, we use MESA for similar studies in which we accrete only Solar material and compare the results. Third, we accrete Solar matter until the TNR is initiated and then switch the composition in the accreted layers to a mixed composition: either 25% core and 75% Solar or 50% core and 50% Solar. The amount of accreted material is inversely proportional to the initial 12 C abundance. Thus, accreting Solar material results in more material to fuel the outburst - much larger than in the earlier studies where mixed materials were used from the beginning. We tabulate the amount of ejected gases, their velocities, and abundances. We predict the amount of 7 Li and 7 Be produced and ejected by the explosion and compare our predictions to our Large Binocular Telescope (LBT) high dispersion spectra which determined the abundance of 7 Li in nova V5668 Sgr. Finally, many of these simulations eject significantly less mass than accreted and, therefore, the WD is growing in mass toward the Chandrasekhar Limit

    Extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors

    Get PDF
    Nucleon electromagnetic form factor data (including recent data) is fitted with models that respect the confinement and asymptotic freedom properties of QCD. Gari-Krumpelmann (GK) type models, which include the major vector meson pole contributions and at high momentum transfer conform to the predictions of perturbative QCD, are combined with Hohler-Pietarinen (HP) models, which also include the width of the rho meson and the addition of higher mass vector meson exchanges, but do not evolve into the explicit form of PQCD at high momentum transfer. Different parameterizations of the GK model's hadronic form factors, the effect of including the width of the rho meson and the addition of the next (in mass) isospin 1 vector meson are considered. The quality of fit and the consistency of the parameters select three of the combined HP/GK type models. Projections are made to the higher momentum transfers which are relevant to electron-deuteron experiments. The projections vary little for the preferred models, removing much of the ambiguity in electron-nucleus scattering predictions.Comment: 18pp, 7 figures, using RevTeX with BoxedEPS macros; 1 new figure, minor textual changes; email correspondence to [email protected]

    Effect of recent R_p and R_n measurements on extended Gari-Krumpelmann model fits to nucleon electromagnetic form factors

    Full text link
    The Gari-Krumpelmann (GK) models of nucleon electromagnetic form factors, in which the rho, omega, and phi vector meson pole contributions evolve at high momentum transfer to conform to the predictions of perturbative QCD (pQCD), was recently extended to include the width of the rho meson by substituting the result of dispersion relations for the pole and the addition of rho' (1450) isovector vector meson pole. This extended model was shown to produce a good overall fit to all the available nucleon electromagnetic form factor (emff) data. Since then new polarization data shows that the electric to magnetic ratios R_p and R_n obtained are not consistent with the older G_{Ep} and G_{En} data in their range of momentum transfer. The model is further extended to include the omega' (1419) isoscalar vector meson pole. It is found that while this GKex cannot simultaneously fit the new R_p and the old G_{En} data, it can fit the new R_p and R_n well simultaneously. An excellent fit to all the remaining data is obtained when the inconsistent G_{Ep} and G_{En} is omitted. The model predictions are shown up to momentum transfer squared, Q^2, of 8 GeV^2/c^2.Comment: 14 pages, 8 figures, using RevTeX4; email correspondence to [email protected] ; minor typos corrected, figures added, conclusions extende

    Particulate air pollutants, APOE alleles and their contributions to cognitive impairment in older women and to amyloidogenesis in experimental models

    Get PDF
    Exposure to particulate matter (PM) in the ambient air and its interactions with APOE alleles may contribute to the acceleration of brain aging and the pathogenesis of Alzheimer's disease (AD). Neurodegenerative effects of particulate air pollutants were examined in a US-wide cohort of older women from the Women's Health Initiative Memory Study (WHIMS) and in experimental mouse models. Residing in places with fine PM exceeding EPA standards increased the risks for global cognitive decline and all-cause dementia respectively by 81 and 92%, with stronger adverse effects in APOE ɛ4/4 carriers. Female EFAD transgenic mice (5xFAD+/−/human APOE ɛ3 or ɛ4+/+) with 225 h exposure to urban nanosized PM (nPM) over 15 weeks showed increased cerebral β-amyloid by thioflavin S for fibrillary amyloid and by immunocytochemistry for Aβ deposits, both exacerbated by APOE ɛ4. Moreover, nPM exposure increased Aβ oligomers, caused selective atrophy of hippocampal CA1 neurites, and decreased the glutamate GluR1 subunit. Wildtype C57BL/6 female mice also showed nPM-induced CA1 atrophy and GluR1 decrease. In vitro nPM exposure of neuroblastoma cells (N2a-APP/swe) increased the pro-amyloidogenic processing of the amyloid precursor protein (APP). We suggest that airborne PM exposure promotes pathological brain aging in older women, with potentially a greater impact in ɛ4 carriers. The underlying mechanisms may involve increased cerebral Aβ production and selective changes in hippocampal CA1 neurons and glutamate receptor subunits
    • …
    corecore