13 research outputs found

    Clinical research in ovarian cancer: consensus recommendations from the Gynecologic Cancer InterGroup

    Get PDF
    The Gynecologic Cancer InterGroup (GCIG) sixth Ovarian Cancer Conference on Clinical Research was held virtually in October, 2021, following published consensus guidelines. The goal of the consensus meeting was to achieve harmonisation on the design elements of upcoming trials in ovarian cancer, to select important questions for future study, and to identify unmet needs. All 33 GCIG member groups participated in the development, refinement, and adoption of 20 statements within four topic groups on clinical research in ovarian cancer including first line treatment, recurrent disease, disease subgroups, and future trials. Unanimous consensus was obtained for 14 of 20 statements, with greater than 90% concordance in the remaining six statements. The high acceptance rate following active deliberation among the GCIG groups confirmed that a consensus process could be applied in a virtual setting. Together with detailed categorisation of unmet needs, these consensus statements will promote the harmonisation of international clinical research in ovarian cancer

    New recycling model for light ions and atoms

    No full text
    Recent theoretical studies and experimental results suggest a revision of light-ion reflection models used in simulation codes. Surface impenetrability leads to large reflection coefficients for hydrogen isotopes incident below 5 to 20 eV. Adsorption below 5 to 10 eV also depends on saturation of the surfaces. An effective surface roughness is included for all energy regimes. The fraction of nonreflected particles reemitted as molecules depends on the previous exposure of the surface and the incident flux. Simple models of these processes are collected in a form usable in neutral transport codes. The relevance of such models to tokamak design and of interpreting divertor tokamak data is discussed and illustrated by numerical computation
    corecore