1,559 research outputs found

    Statistics and Characteristics of Spatio-Temporally Rare Intense Events in Complex Ginzburg-Landau Models

    Full text link
    We study the statistics and characteristics of rare intense events in two types of two dimensional Complex Ginzburg-Landau (CGL) equation based models. Our numerical simulations show finite amplitude collapse-like solutions which approach the infinite amplitude solutions of the nonlinear Schr\"{o}dinger (NLS) equation in an appropriate parameter regime. We also determine the probability distribution function (PDF) of the amplitude of the CGL solutions, which is found to be approximately described by a stretched exponential distribution, P(A)eAηP(|A|) \approx e^{-|A|^\eta}, where η<1\eta < 1. This non-Gaussian PDF is explained by the nonlinear characteristics of individual bursts combined with the statistics of bursts. Our results suggest a general picture in which an incoherent background of weakly interacting waves, occasionally, `by chance', initiates intense, coherent, self-reinforcing, highly nonlinear events.Comment: 7 pages, 9 figure

    A two-step learning approach for solving full and almost full cold start problems in dyadic prediction

    Full text link
    Dyadic prediction methods operate on pairs of objects (dyads), aiming to infer labels for out-of-sample dyads. We consider the full and almost full cold start problem in dyadic prediction, a setting that occurs when both objects in an out-of-sample dyad have not been observed during training, or if one of them has been observed, but very few times. A popular approach for addressing this problem is to train a model that makes predictions based on a pairwise feature representation of the dyads, or, in case of kernel methods, based on a tensor product pairwise kernel. As an alternative to such a kernel approach, we introduce a novel two-step learning algorithm that borrows ideas from the fields of pairwise learning and spectral filtering. We show theoretically that the two-step method is very closely related to the tensor product kernel approach, and experimentally that it yields a slightly better predictive performance. Moreover, unlike existing tensor product kernel methods, the two-step method allows closed-form solutions for training and parameter selection via cross-validation estimates both in the full and almost full cold start settings, making the approach much more efficient and straightforward to implement

    The VLBA Imaging and Polarimetry Survey at 5 GHz

    Get PDF
    We present the first results of the VLBA Imaging and Polarimetry Survey (VIPS), a 5 GHz VLBI survey of 1,127 sources with flat radio spectra. Through automated data reduction and imaging routines, we have produced publicly available I, Q, and U images and have detected polarized flux density from 37% of the sources. We have also developed an algorithm to use each source's I image to automatically classify it as a point-like source, a core-jet, a compact symmetric object (CSO) candidate, or a complex source. The mean ratio of the polarized to total 5 GHz flux density for VIPS sources with detected polarized flux density ranges from 1% to 20% with a median value of about 5%. We have also found significant evidence that the directions of the jets in core-jet systems tend to be perpendicular to the electric vector position angles (EVPAs). The data is consistent with a scenario in which ~24% of the polarized core-jets have EVPAs that are anti-aligned with the directions of their jet components and which have a substantial amount of Faraday rotation. In addition to these initial results, plans for future follow-up observations are discussed.Comment: 36 pages, 3 tables, 13 figures; accepted for publication in Ap

    Prominent bulk pinning effect in the MgB_2 superconductor

    Full text link
    We report the magnetic-field dependence of the irreversible magnetization of the recently discovered binary superconductor MgB2_{2}. For the temperature region of T<0.9TcT< 0.9T_c, the contribution of the bulk pinning to the magnetization overwhelms that of the surface pinning. This was evident from the fact that the magnetization curves, M(H)M(H), were well described by the critical-state model without considering the surface pinning effect. It was also found that the M(H)M(H) curves at various temperatures scaled when the field and the magnetization were normalized by the characteristic scaling factors H(T)H^\ast(T) and M(T)M^\ast(T), respectively. This feature suggests that the pinning mechanism determining the hysteresis in M(H)M(H) is unique below T=TcT=T_c.Comment: 4pages and 4 figures. Phys. Rev. B (accepted

    Quantum Dynamics in Non-equilibrium Strongly Correlated Environments

    Full text link
    We consider a quantum point contact between two Luttinger liquids coupled to a mechanical system (oscillator). For non-vanishing bias, we find an effective oscillator temperature that depends on the Luttinger parameter. A generalized fluctuation-dissipation relation connects the decoherence and dissipation of the oscillator to the current-voltage characteristics of the device. Via a spectral representation, this result is generalized to arbitrary leads in a weak tunneling regime.Comment: 4 pages, 1 figur

    On the deflection of asteroids with mirrors

    Get PDF
    This paper presents an analysis of an asteroid deflection method based on multiple solar concentrators. A model of the deflection through the sublimation of the surface material of an asteroid is presented, with simulation results showing the achievable orbital deflection with, and without, accounting for the effects of mirror contamination due to the ejected debris plume. A second model with simulation results is presented analyzing an enhancement of the Yarkovsky effect, which provides a significant deflection even when the surface temperature is not high enough to sublimate. Finally the dynamical model of solar concentrators in the proximity of an irregular celestial body are discussed, together with a Lyapunov-based controller to maintain the spacecraft concentrators at a required distance from the asteroid

    Work function changes in the double layered manganite La1.2Sr1.8Mn2O7

    Full text link
    We have investigated the behaviour of the work function of La1.2Sr1.8Mn2O7 as a function of temperature by means of photoemission. We found a decrease of 55 +/- 10 meV in going from 60 K to just above the Curie temperature (125 K) of the sample. Above T_C the work function appears to be roughly constant. Our results are exactly opposite to the work function changes calculated from the double-exchange model by Furukawa, but are consistent with other measurements. The disagreement with double-exchange can be explained using a general thermodynamic relation valid for second order transitions and including the extra processes involved in the manganites besides double-exchange interaction.Comment: 6 pages, 4 figures included in tex

    Brane fluctuation and the electroweak chiral Lagrangian

    Full text link
    We use the external field method to study the electroweak chiral Lagrangian of the extra dimension model with brane fluctuation. Under the assumption that the contact terms between the matters of the standard model and KK excitations are heavily suppressed, we use the standard procedure to integrate out the quantum fields of KK excitations and the equation of motion to eliminate the classic fields of KK excitations. At one-loop level, we find that up to the order O(p4)O(p^4), due to the momentum conservation of the fifth dimension and the gauge symmetry of the zero modes, there is no constraint on the size of extra dimension. This result is consistent with the decoupling theorem. However, meaningful constraints can come from those operators in O(p6)O(p^6), which can contribute considerably to some anomalous vector couplings and can be accessible in the LC and LHC.Comment: Revised version, 20 pages in ReVTeX, to appear in PR
    corecore