1,559 research outputs found
Statistics and Characteristics of Spatio-Temporally Rare Intense Events in Complex Ginzburg-Landau Models
We study the statistics and characteristics of rare intense events in two
types of two dimensional Complex Ginzburg-Landau (CGL) equation based models.
Our numerical simulations show finite amplitude collapse-like solutions which
approach the infinite amplitude solutions of the nonlinear Schr\"{o}dinger
(NLS) equation in an appropriate parameter regime. We also determine the
probability distribution function (PDF) of the amplitude of the CGL solutions,
which is found to be approximately described by a stretched exponential
distribution, , where . This
non-Gaussian PDF is explained by the nonlinear characteristics of individual
bursts combined with the statistics of bursts. Our results suggest a general
picture in which an incoherent background of weakly interacting waves,
occasionally, `by chance', initiates intense, coherent, self-reinforcing,
highly nonlinear events.Comment: 7 pages, 9 figure
A two-step learning approach for solving full and almost full cold start problems in dyadic prediction
Dyadic prediction methods operate on pairs of objects (dyads), aiming to
infer labels for out-of-sample dyads. We consider the full and almost full cold
start problem in dyadic prediction, a setting that occurs when both objects in
an out-of-sample dyad have not been observed during training, or if one of them
has been observed, but very few times. A popular approach for addressing this
problem is to train a model that makes predictions based on a pairwise feature
representation of the dyads, or, in case of kernel methods, based on a tensor
product pairwise kernel. As an alternative to such a kernel approach, we
introduce a novel two-step learning algorithm that borrows ideas from the
fields of pairwise learning and spectral filtering. We show theoretically that
the two-step method is very closely related to the tensor product kernel
approach, and experimentally that it yields a slightly better predictive
performance. Moreover, unlike existing tensor product kernel methods, the
two-step method allows closed-form solutions for training and parameter
selection via cross-validation estimates both in the full and almost full cold
start settings, making the approach much more efficient and straightforward to
implement
The VLBA Imaging and Polarimetry Survey at 5 GHz
We present the first results of the VLBA Imaging and Polarimetry Survey
(VIPS), a 5 GHz VLBI survey of 1,127 sources with flat radio spectra. Through
automated data reduction and imaging routines, we have produced publicly
available I, Q, and U images and have detected polarized flux density from 37%
of the sources. We have also developed an algorithm to use each source's I
image to automatically classify it as a point-like source, a core-jet, a
compact symmetric object (CSO) candidate, or a complex source. The mean ratio
of the polarized to total 5 GHz flux density for VIPS sources with detected
polarized flux density ranges from 1% to 20% with a median value of about 5%.
We have also found significant evidence that the directions of the jets in
core-jet systems tend to be perpendicular to the electric vector position
angles (EVPAs). The data is consistent with a scenario in which ~24% of the
polarized core-jets have EVPAs that are anti-aligned with the directions of
their jet components and which have a substantial amount of Faraday rotation.
In addition to these initial results, plans for future follow-up observations
are discussed.Comment: 36 pages, 3 tables, 13 figures; accepted for publication in Ap
Prominent bulk pinning effect in the MgB_2 superconductor
We report the magnetic-field dependence of the irreversible magnetization of
the recently discovered binary superconductor MgB. For the temperature
region of , the contribution of the bulk pinning to the
magnetization overwhelms that of the surface pinning. This was evident from the
fact that the magnetization curves, , were well described by the
critical-state model without considering the surface pinning effect. It was
also found that the curves at various temperatures scaled when the field
and the magnetization were normalized by the characteristic scaling factors
and , respectively. This feature suggests that the
pinning mechanism determining the hysteresis in is unique below .Comment: 4pages and 4 figures. Phys. Rev. B (accepted
Quantum Dynamics in Non-equilibrium Strongly Correlated Environments
We consider a quantum point contact between two Luttinger liquids coupled to
a mechanical system (oscillator). For non-vanishing bias, we find an effective
oscillator temperature that depends on the Luttinger parameter. A generalized
fluctuation-dissipation relation connects the decoherence and dissipation of
the oscillator to the current-voltage characteristics of the device. Via a
spectral representation, this result is generalized to arbitrary leads in a
weak tunneling regime.Comment: 4 pages, 1 figur
On the deflection of asteroids with mirrors
This paper presents an analysis of an asteroid deflection method based on multiple solar concentrators. A model of the deflection through the sublimation of the surface material of an asteroid is presented, with simulation results showing the achievable orbital deflection with, and without, accounting for the effects of mirror contamination due to the ejected debris plume. A second model with simulation results is presented analyzing an enhancement of the Yarkovsky effect, which provides a significant deflection even when the surface temperature is not high enough to sublimate. Finally the dynamical model of solar concentrators in the proximity of an irregular celestial body are discussed, together with a Lyapunov-based controller to maintain the spacecraft concentrators at a required distance from the asteroid
Work function changes in the double layered manganite La1.2Sr1.8Mn2O7
We have investigated the behaviour of the work function of La1.2Sr1.8Mn2O7 as
a function of temperature by means of photoemission. We found a decrease of 55
+/- 10 meV in going from 60 K to just above the Curie temperature (125 K) of
the sample. Above T_C the work function appears to be roughly constant. Our
results are exactly opposite to the work function changes calculated from the
double-exchange model by Furukawa, but are consistent with other measurements.
The disagreement with double-exchange can be explained using a general
thermodynamic relation valid for second order transitions and including the
extra processes involved in the manganites besides double-exchange interaction.Comment: 6 pages, 4 figures included in tex
Brane fluctuation and the electroweak chiral Lagrangian
We use the external field method to study the electroweak chiral Lagrangian
of the extra dimension model with brane fluctuation. Under the assumption that
the contact terms between the matters of the standard model and KK excitations
are heavily suppressed, we use the standard procedure to integrate out the
quantum fields of KK excitations and the equation of motion to eliminate the
classic fields of KK excitations. At one-loop level, we find that up to the
order , due to the momentum conservation of the fifth dimension and the
gauge symmetry of the zero modes, there is no constraint on the size of extra
dimension. This result is consistent with the decoupling theorem. However,
meaningful constraints can come from those operators in , which can
contribute considerably to some anomalous vector couplings and can be
accessible in the LC and LHC.Comment: Revised version, 20 pages in ReVTeX, to appear in PR
A Comparison of 37-Ca(p,n) Cross Sections to 37-Ca β-Decay
This research was sponsored by the National Science Foundation Grant NSF PHY-931478
- …