9 research outputs found

    Bose-Condensed Gases in a 1D Optical Lattice at Finite Temperatures

    Full text link
    We study equilibrium properties of Bose-Condensed gases in a one-dimensional (1D) optical lattice at finite temperatures. We assume that an additional harmonic confinement is highly anisotropic, in which the confinement in the radial directions is much tighter than in the axial direction. We derive a quasi-1D model of the Gross-Pitaeavkill equation and the Bogoliubov equations, and numerically solve these equations to obtain the condensate fraction as a function of the temperature.Comment: Comments: 6 pages, 3 figures, submitted to Quantum Fluids and Solids Conference (QFS 2006

    Theory of the Quantum Hall Smectic Phase II: Microscopic Theory

    Full text link
    We present a microscopic derivation of the hydrodynamic theory of the Quantum Hall smectic or stripe phase of a two-dimensional electron gas in a large magnetic field. The effective action of the low energy is derived here from a microscopic picture by integrating out high energy excitations with a scale of the order the cyclotron energy.The remaining low-energy theory can be expressed in terms of two canonically conjugate sets of degrees of freedom: the displacement field, that describes the fluctuations of the shapes of the stripes, and the local charge fluctuations on each stripe.Comment: 20 pages, RevTex, 3 figures, second part of cond-mat/0105448 New and improved Introduction. Final version as it will appear in Physical Review

    Adiabatic perturbation theory: from Landau-Zener problem to quenching through a quantum critical point

    Full text link
    We discuss the application of the adiabatic perturbation theory to analyze the dynamics in various systems in the limit of slow parametric changes of the Hamiltonian. We first consider a two-level system and give an elementary derivation of the asymptotics of the transition probability when the tuning parameter slowly changes in the finite range. Then we apply this perturbation theory to many-particle systems with low energy spectrum characterized by quasiparticle excitations. Within this approach we derive the scaling of various quantities such as the density of generated defects, entropy and energy. We discuss the applications of this approach to a specific situation where the system crosses a quantum critical point. We also show the connection between adiabatic and sudden quenches near a quantum phase transitions and discuss the effects of quasiparticle statistics on slow and sudden quenches at finite temperatures.Comment: 20 pages, 3 figures, contribution to "Quantum Quenching, Annealing and Computation", Eds. A. Das, A. Chandra and B. K. Chakrabarti, Lect. Notes in Phys., Springer, Heidelberg (2009, to be published), reference correcte

    Coarse-Grained Finite-Temperature Theory for the Condensate in Optical Lattices

    Full text link
    In this work, we derive a coarse-grained finite-temperature theory for a Bose condensate in a one-dimensional optical lattice, in addition to a confining harmonic trap potential. We start from a two-particle irreducible (2PI) effective action on the Schwinger-Keldysh closed-time contour path. In principle, this action involves all information of equilibrium and non-equilibrium properties of the condensate and noncondensate atoms. By assuming an ansatz for the variational function, i.e., the condensate order parameter in an effective action, we derive a coarse-grained effective action, which describes the dynamics on the length scale much longer than a lattice constant. Using the variational principle, coarse-grained equations of motion for the condensate variables are obtained. These equations include a dissipative term due to collisions between condensate and noncondensate atoms, as well as noncondensate mean-field. To illustrate the usefulness of our formalism, we discuss a Landau instability of the condensate in optical lattices by using the coarse-grained generalized Gross-Pitaevskii hydrodynamics. We found that the collisional damping rate due to collisions between the condensate and noncondensate atoms changes sign when the condensate velocity exceeds a renormalized sound velocity, leading to a Landau instability consistent with the Landau criterion. Our results in this work give an insight into the microscopic origin of the Landau instability.Comment: 38 pages, 2 figures. Submitted to Journal of Low Temperature Physic

    Far-from-equilibrium quantum many-body dynamics

    Full text link
    The theory of real-time quantum many-body dynamics as put forward in Ref. [arXiv:0710.4627] is evaluated in detail. The formulation is based on a generating functional of correlation functions where the Keldysh contour is closed at a given time. Extending the Keldysh contour from this time to a later time leads to a dynamic flow of the generating functional. This flow describes the dynamics of the system and has an explicit causal structure. In the present work it is evaluated within a vertex expansion of the effective action leading to time evolution equations for Green functions. These equations are applicable for strongly interacting systems as well as for studying the late-time behaviour of nonequilibrium time evolution. For the specific case of a bosonic N-component phi^4 theory with contact interactions an s-channel truncation is identified to yield equations identical to those derived from the 2PI effective action in next-to-leading order of a 1/N expansion. The presented approach allows to directly obtain non-perturbative dynamic equations beyond the widely used 2PI approximations.Comment: 20 pp., 6 figs; submitted version with added references and typos corrected

    From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics

    No full text
    corecore