88 research outputs found

    Progress towards photonic crystal quantum cascade laser

    Get PDF
    The work describes recent progress in the design, simulation, implementation and characterisation of photonic crystal (PhC) GaAs-based quantum cascade lasers (QCLs). The benefits of applying active PhC confinement around a QCL cavity are explained, highlighting a route to reduced threshold current operation. Design of a suitable PhC has been performed using published bandgap maps; simulation results of this PhC show a wide, high reflectivity stopband. Implementation of the PhC for the device is particularly difficult, requiring a very durable metallic dry etch mask, high performance dry etching and a low damage epilayer-down device mounting technique. Preliminary shallow etched PhC QCLs demonstrated the viability of current injection through the metal etch mask and the device mounting technique. Development of the etch mask and dry etching have demonstrated a process suitable for the manufacture of deep etched PhC structures. All the necessary elements for implementing deep etched PhC QCLs have now been demonstrated, allowing for the development of high performance devices

    Integration of a resonant tunneling diode and an optical communications laser

    Get PDF
    We report on the first integration of a resonant tunneling diode and an optical communications laser operating at around 1.5 /spl μm. We demonstrate its low-frequency bistable operation and model its electrical characteristics

    Application of photoluminescence and electroluminescence techniques to the characterization of intermediate band solar cells

    Get PDF
    The intermediatebandsolarcell (IBSC) is a photovoltaic device with a theoretical conversion efficiency limit of 63.2%. In recent years many attempts have been made to fabricate an intermediateband material which behaves as the theory states. One characteristic feature of an IBSC is its luminescence spectrum. In this work the temperature dependence of the photoluminescence (PL) and electroluminescence (EL) spectra of InAs/GaAs QD-IBSCs together with their reference cell have been studied. It is shown that EL measurements provide more reliable information about the behaviour of the IB material inside the IBSC structure than PL measurements. At low temperatures, the EL spectra are consistent with the quasi-Fermi level splits described by the IBSC model, whereas at room temperature they are not. This result is in agreement with previously reported analysis of the quantum efficiency of the solarcell

    Optoelectronic Characterisation of Intermediate Band Solar Cells by Photoreflectance Comparison to Other Advanced Architectures.

    Get PDF
    The fabrication and design of novel materials and devices for advanced photovoltaics, like the intermediate-band solar cell (IBSC), requires the use of specific characterization tools providing information about their optoelectronic properties. We have tested the suitability of photoreflectance for the characterization of IBSC prototypes based on quantum dots and compared the results obtained with those predicted by the theory. Nonidealities in operative devices have been identified and detailed information has been obtained about the electronic structure of the materials. We have compared PR spectra of IBSCs with those obtained from alternative device architectures, namely a triple-junction solar cell and a multi-quantum well structure. Some general conclusions are drawn demonstrating the potential of the technique

    Lateral absorption measurements of InAs/GaAs quantum dots stacks: Potential as intermediate band material for high efficiency solar cells

    Get PDF
    Prototypes based on InAs/GaAs QDs have been manufactured in order to realize the theoretically predicted high efficiency intermediate band solar cells (IBSCs). Unfortunately, until now, these prototypes have not yet demonstrated the expected increase in efficiency when compared with reference samples without IB material. One of the main arguments explaining this performance is the weak photon absorption in the QD-IB material, arising from a low density of QDs. In this work, we have analyzed the absorption coefficient of the IB material by developing a sample in an optical wave-guided configuration. This configuration allows us to illuminate the QDs laterally, increasing the path length for photon absorption. Using a multi-section metal contact device design, we were able to measure an absorption coefficient of ∌100 cm−1 around the band edge (∌1 eV ) defined by the transition in InAs/GaAs QD-IB materials. This figure, and its influence on the IBSC concept, is analyzed for this system

    Demonstration and Analysis of the Photocurrent by absorption of two sub-bandgap photons in a quantum dot intermediate band solar cell

    Full text link
    In order to surpass the efficiency limit of single gap solar cells, intermediate band solar cells (IBSC) have to fulfill two requirements: the production of extra photocurrent by absorption of sub-bandgap photons in electronic transitions involving the intermediate band (IB) and the preservation of a high output voltage, not limited by the existence of this band. This work presents experimental evidence of the production of electron-hole pairs by absorption of two sub-bandgap photons in IBSC prototypes fabricated with InAs/GaAs QD material. The experiments were carried out at low temperatures using a specifically designed modulated photocurrent measurement set-up with two light beams. The results are analysed with the help of a simple equivalent circuit model. This analysis is also used to highlight the relevance of the two-photon mechanism demonstrated in the experiment. It is discussed that, although the absorption of sub-bandgap photons in one of the IB transitions and subsequent thermal escape of carriers is a sufficient mechanism to obtain a photocurrent enhancement, the absorption of sub-bandgap photons in both transitions involving the IB is a requisite for the voltage preservation in IBSCs

    Optical Characterization of Quantum Dot Intermediate Band Solar Cells

    Get PDF
    In this paper we present an optical characterization for quantum dot intermediate band solar cells (QDIBSCs). The cells were developed by growing a stack of ten InAs/GaAs QDs layers between p and n doped GaAs conventional emitters. Electroluminescence, EL, photoreflectance, PR, and transmission electron microscopy, TEM, were applied to the samples in order to test and characterize them optically. The results, derived from the application of the different techniques, showed a good correlation. TEM images revealed a very good structural quality of the QDs, which seem to evolve in shape-strain from the bottom to the top of the stack. Corresponding to the quality observed by TEM, strong signals from EL and PR resolved unambiguously the energy band diagram of the QDIBSCs. By fitting PR data we were able to indentify the coexistence of bands and discrete energy levels coming from the IB material. The PR data evidenced also a strong electric field over the dots, attributed to the space charge region created between the p-n emitters sandwiching the IB material. From EL results, we identified the predominantly radiative nature of the IB material related energy transition

    Understanding the operation of quantum dot intermediate band solar cells

    Get PDF
    In this paper, a model for intermediate band solar cells is built based on the generally understood physical concepts ruling semiconductor device operation, with special emphasis on the behavior at low temperature. The model is compared to JL-VOC measurements at concentrations up to about 1000 suns and at temperatures down to 20 K, as well as measurements of the radiative recombination obtained from electroluminescence. The agreement is reasonable. It is found that the main reason for the reduction of open circuit voltage is an operational reduction of the bandgap, but this effect disappears at high concentrations or at low temperatures

    Inx(GayAl1-y)1-xAs quaternary alloys for quantum dot intermediate band solar cells

    Get PDF
    Within the context of quantum dot Intermediate Band Solar Cells (QD-IBSC), it is of interest to investigate the maximum value that can be achieved for the smaller of the transitions (EL), since values larger than 0.3 eV are required for improved performance. This work provides both theoretical and experimental arguments to verify the shift of the IB position to deeper energies by using an Inx(GayAl1−y)1−xAs capping layer, fulfilling the double function of increasing the QD size and eliminating the discontinuity in the conduction band between the quaternary cap and the GaAs barrier

    IBPOWER Project, Intermediate band materials and solar cells for photovoltaics with high efficiency and reduced cost

    Full text link
    IBPOWER is a Project awarded under the 7th European Framework Programme that aims to advance research on intermediate band solar cells (IBSCs). These are solar cells conceived to absorb below bandgap energy photons by means of an electronic energy band that is located within the semiconductor bandgap, whilst producing photocurrent with output voltage still limited by the total semiconductor bandgap. IBPOWER employs two basic strategies for implementing the IBSC concept. The first is based on the use of quantum dots, the IB arising from the confined energy levels of the electrons in the dots. Quantum dots have led to devices that demonstrate the physical operation principles of the IB concept and have allowed identification of the problems to be solved to achieve actual high efficiencies. The second approach is based on the creation of bulk intermediate band materials by the insertion of an appropriate impurity into a bulk semiconductor. Under this approach it is expected that, when inserted at high densities, these impurities will find it difficult to capture electrons by producing a breathing mode and will cease behaving as non-radiative recombination centres. Towards this end the following systems are being investigated: a) Mn: In1-xGax N; b) transition metals in GaAs and c) thin films
    • 

    corecore