236 research outputs found

    Dynamic generation of maximally entangled photon multiplets by adiabatic passage

    Get PDF
    The adiabatic passage scheme for quantum state synthesis, in which atomic Zeeman coherences are mapped to photon states in an optical cavity, is extended to the general case of two degenerate cavity modes with orthogonal polarization. Analytical calculations of the dressed-state structure and Monte Carlo wave-function simulations of the system dynamics show that, for a suitably chosen cavity detuning, it is possible to generate states of photon multiplets that are maximally entangled in polarization. These states display nonclassical correlations of the type described by Greenberger, Horne, and Zeilinger (GHZ). An experimental scheme to realize a GHZ measurement using coincidence detection of the photons escaping from the cavity is proposed. The correlations are found to originate in the dynamics of the adiabatic passage and persist even if cavity decay and GHZ state synthesis compete on the same time scale. Beyond entangled field states, it is also possible to generate entanglement between photons and the atom by using a different atomic transition and initial Zeeman state.Comment: 22 pages (RevTeX), including 23 postscript figures. To be published in Physical Review

    The dynamics of quantum phases in a spinor condensate

    Full text link
    We discuss the quantum phases and their diffusion dynamics in a spinor-1 atomic Bose-Einstein condensate. For ferromagnetic interactions, we obtain the exact ground state distribution of the phases associated with the total atom number (NN), the total magnetization (M{\cal M}), and the alignment (or hypercharge) (YY) of the system. The mean field ground state is stable against fluctuations of atom numbers in each of the spin components, and the phases associated with the order parameter for each spin components diffuse while dynamically recover the two broken continuous symmetries [U(1) and SO(2)] when NN and M{\cal M} are conserved as in current experiments. We discuss the implications to the quantum dynamics due to an external (homogeneous) magnetic field. We also comment on the case of a spinor-1 condensate with anti-ferromagnetic interactions.Comment: 5 figures, an extended version of cond-mat/030117

    Generation of arbitrary two dimensional motional state of a trapped ion

    Full text link
    We present a scheme to generate an arbitrary two-dimensional quantum state of motion of a trapped ion. This proposal is based on a sequence of laser pulses, which are tuned appropriately to control transitions on the sidebands of two modes of vibration. Not more than (M+1)(N+1)(M+1)(N+1) laser pulses are needed to generate a pure state with upper phonon number MM and NN in the xx and yy direction respectively.Comment: to appear in PR

    Generation of two-mode nonclassical states and a quantum phase gate operation in trapped ion cavity QED

    Full text link
    We propose a scheme to generate nonclassical states of a quantum system, which is composed of the one-dimensional trapped ion motion and a single cavity field mode. We show that two-mode SU(2) Schr\"odinger-cat states, entangled coherent states, two-mode squeezed vacuum states and their superposition can be generated. If the vibration mode and the cavity mode are used to represent separately a qubit, a quantum phase gate can be implemented.Comment: to appear in PR

    On the single mode approximation in spinor-1 atomic condensate

    Full text link
    We investigate the validity conditions of the single mode approximation (SMA) in spinor-1 atomic condensate when effects due to residual magnetic fields are negligible. For atomic interactions of the ferromagnetic type, the SMA is shown to be exact, with a mode function different from what is commonly used. However, the quantitative deviation is small under current experimental conditions (for 87^{87}Rb atoms). For anti-ferromagnetic interactions, we find that the SMA becomes invalid in general. The differences among the mean field mode functions for the three spin components are shown to depend strongly on the system magnetization. Our results can be important for studies of beyond mean field quantum correlations, such as fragmentation, spin squeezing, and multi-partite entanglement.Comment: Revised, newly found analytic proof adde

    Instabilities in a Two-Component, Species Conserving Condensate

    Full text link
    We consider a system of two species of bosons of equal mass, with interactions Ua(x)U^{a}(|x|) and Ux(x)U^{x}(|x|) for bosons of the same and different species respectively. We present a rigorous proof -- valid when the Hamiltonian does not include a species switching term -- showing that, when Ux(x)>Ua(x)U^{x}(|x|)>U^{a}(|x|), the ground state is fully "polarized" (consists of atoms of one kind only). In the unpolarized phase the low energy excitation spectrum corresponds to two linearly dispersing modes that are even a nd odd under species exchange. The polarization instability is signaled by the vani shing of the velocity of the odd modes.Comment: To appear in Phys. Rev.

    Robust Entanglement in Atomic Systems via Lambda-Type Processes

    Get PDF
    It is shown that the system of two three-level atoms in Λ\Lambda configuration in a cavity can evolve to a long-lived maximum entangled state if the Stokes photons vanish from the cavity by means of either leakage or damping. The difference in evolution picture corresponding to the general model and effective model with two-photon process in two-level system is discussed.Comment: 10 pages, 3 figure

    Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities

    Get PDF
    We study the mutual interaction of a Bose-Einstein condensed gas with a single mode of a high-finesse optical cavity. We show how the cavity transmission reflects condensate properties and calculate the self-consistent intra-cavity light field and condensate evolution. Solving the coupled condensate-cavity equations we find that while falling through the cavity, the condensate is adiabatically transfered into the ground state of the periodic optical potential. This allows time dependent non-destructive measurements on Bose-Einstein condensates with intriguing prospects for subsequent controlled manipulation.Comment: 5 pages, 5 figures; revised version: added reference

    Solutions of Gross-Pitaevskii equations beyond the hydrodynamic approximation: Application to the vortex problem

    Full text link
    We develop the multiscale technique to describe excitations of a Bose-Einstein condensate (BEC) whose characteristic scales are comparable with the healing length, thus going beyond the conventional hydrodynamical approximation. As an application of the theory we derive approximate explicit vortex and other solutions. The dynamical stability of the vortex is discussed on the basis of the mathematical framework developed here, the result being that its stability is granted at least up to times of the order of seconds, which is the condensate lifetime. Our analytical results are confirmed by the numerical simulations.Comment: To appear in Phys. Rev.

    Bose-Einstein condensates in atomic gases: simple theoretical results

    Full text link
    These notes present simple theoretical approaches to study Bose-Einstein condensation in trapped atomic gases and their comparison to recent experimental results : - the ideal Bose gas model - Fermi pseudopotential to model the atomic interaction potential - finite temperature Hartree-Fock approximation - Gross-Pitaevskii equation for the condensate wavefunction - what we learn from a linearization of the Gross-Pitaevskii equation - Bogoliubov approach and thermodynamical stability - phase coherence properties of Bose-Einstein condensates - symmetry breaking description of condensatesComment: 146 pages, 17 figures, Lecture Notes of Les Houches Summer School 199
    corecore