46 research outputs found

    Boundedness, compactness and Schatten-class membership of weighted composition operators

    Full text link
    The boundedness and compactness of weighted composition operators on the Hardy space H2{\mathcal H}^2 of the unit disc is analysed. Particular reference is made to the case when the self-map of the disc is an inner function. Schatten-class membership is also considered; as a result, stronger forms of the two main results of a recent paper of Gunatillake are derived. Finally, weighted composition operators on weighted Bergman spaces A2α(D)\mathcal{A}^2 \alpha(\mathbb{D}) are considered, and the results of Harper and Smith, linking their properties to those of Carleson embeddings, are extended to this situation.Comment: 12 page

    Asymptotics of the Farey Fraction Spin Chain Free Energy at the Critical Point

    Full text link
    We consider the Farey fraction spin chain in an external field hh. Using ideas from dynamical systems and functional analysis, we show that the free energy ff in the vicinity of the second-order phase transition is given, exactly, by ftlogt12h2tforh2t1. f \sim \frac t{\log t}-\frac1{2} \frac{h^2}t \quad \text{for} \quad h^2\ll t \ll 1 . Here t=λGlog(2)(1ββc)t=\lambda_{G}\log(2)(1-\frac{\beta}{\beta_c}) is a reduced temperature, so that the deviation from the critical point is scaled by the Lyapunov exponent of the Gauss map, λG\lambda_G. It follows that λG\lambda_G determines the amplitude of both the specific heat and susceptibility singularities. To our knowledge, there is only one other microscopically defined interacting model for which the free energy near a phase transition is known as a function of two variables. Our results confirm what was found previously with a cluster approximation, and show that a clustering mechanism is in fact responsible for the transition. However, the results disagree in part with a renormalisation group treatment

    Abel's Functional Equation and Eigenvalues of Composition Operators on Spaces of Real Analytic Functions

    Get PDF
    We obtain full description of eigenvalues and eigenvectors of composition operators Cϕ : A (R) → A (R) for a real analytic self map ϕ : R → R as well as an isomorphic description of corresponding eigenspaces. We completely characterize those ϕ for which Abel’s equation f ◦ ϕ = f + 1 has a real analytic solution on the real line. We find cases when the operator Cϕ has roots using a constructed embedding of ϕ into the so-called real analytic iteration semigroups.(1) The research of the authors was partially supported by MEC and FEDER Project MTM2010-15200 and MTM2013-43540-P and the work of Bonet also by GV Project Prometeo II/2013/013. The research of Domanski was supported by National Center of Science, Poland, Grant No. NN201 605340. (2) The authors are very indebted to K. Pawalowski (Poznan) for providing us with references [26,27,47] and also explaining some topological arguments of [10]. The authors are also thankful to M. Langenbruch (Oldenburg) for providing a copy of [29].Bonet Solves, JA.; Domanski, P. (2015). Abel's Functional Equation and Eigenvalues of Composition Operators on Spaces of Real Analytic Functions. Integral Equations and Operator Theory. 81(4):455-482. https://doi.org/10.1007/s00020-014-2175-4S455482814Abel, N.H.: Determination d’une function au moyen d’une equation qui ne contient qu’une seule variable. In: Oeuvres Complètes, vol. II, pp. 246-248. Christiania (1881)Baker I.N.: Zusammensetzung ganzer Funktionen. Math. Z. 69, 121–163 (1958)Baker I.N.: Permutable power series and regular iteration. J. Aust. Math. Soc. 2, 265–294 (1961)Baker I.N.: Permutable entire functions. Math. Z. 79, 243–249 (1962)Baker I.N.: Fractional iteration near a fixpoint of multiplier 1. J. Aust. Math. Soc. 4, 143–148 (1964)Baker I.N.: Non-embeddable functions with a fixpoint of multiplier 1. Math. Z. 99, 337–384 (1967)Baker I.N.: On a class of nonembeddable entire functions. J. Ramanujan Math. Soc. 3, 131–159 (1988)Baron K., Jarczyk W.: Recent results on functional equations in a single variable, perspectives and open problems. Aequ. Math. 61, 1–48 (2001)Belitskii G., Lyubich Y.: The Abel equation and total solvability of linear functional equations. Studia Math. 127, 81–97 (1998)Belitskii G., Lyubich Yu.: The real analytic solutions of the Abel functional equation. Studia Math. 134, 135–141 (1999)Belitskii G., Tkachenko V.: One-Dimensional Functional Equations. Springer, Basel (2003)Belitskii G., Tkachenko V.: Functional equations in real analytic functions. Studia Math. 143, 153–174 (2000)Bonet J., Domański P.: Power bounded composition operators on spaces of analytic functions. Collect. Math. 62, 69–83 (2011)Bonet J., Domański P.: Hypercyclic composition operators on spaces of real analytic functions. Math. Proc. Camb. Philos. Soc. 153, 489–503 (2012)Bracci, F., Poggi-Corradini, P.: On Valiron’s theorem. In: Proceedings of Future Trends in Geometric Function Theory. RNC Workshop Jyväskylä 2003, Rep. Univ. Jyväskylä Dept. Math. Stat., vol. 92, pp. 39–55 (2003)Contreras, M.D.: Iteración de funciones analíticas en el disco unidad. Universidad de Sevilla (2009). (Preprint)Contreras M.D., Díaz-Madrigal S., Pommerenke Ch.: Some remarks on the Abel equation in the unit disk. J. Lond. Math. Soc. 75(2), 623–634 (2007)Cowen C.: Iteration and the solution of functional equations for functions analytic in the unit disc. Trans. Am. Math. Soc. 265, 69–95 (1981)Cowen C.C., MacCluer B.D.: Composition operators on spaces of analytic functions. In: Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)Domański, P.: Notes on real analytic functions and classical operators. In: Topics in Complex Analysis and Operator Theory (Winter School in Complex Analysis and Operator Theory, Valencia, February 2010). Contemporary Math., vol. 561, pp. 3–47. Am. Math. Soc., Providence (2012)Domański P., Goliński M., Langenbruch M.: A note on composition operators on spaces of real analytic functions. Ann. Polon. Math. 103, 209–216 (2012)P. Domański M. Langenbruch 2003 Language="En"Composition operators on spaces of real analytic functions Math. Nachr. 254–255, 68–86 (2003)Domański P., Langenbruch M.: Coherent analytic sets and composition of real analytic functions. J. Reine Angew. Math. 582, 41–59 (2005)Domański P., Langenbruch M.: Composition operators with closed image on spaces of real analytic functions. Bull. Lond. Math. Soc. 38, 636–646 (2006)Domański P., Vogt D.: The space of real analytic functions has no basis. Studia Math. 142, 187–200 (2000)Fuks D.B., Rokhlin V.A.: Beginner’s Course in Topology. Springer, Berlin (1984)Greenberg M.J.: Lectures on Algebraic Topology. W. A. Benjamin Inc., Reading (1967)Hammond, C.: On the norm of a composition operator, PhD. dissertation, Graduate Faculty of the University of Virginia (2003). http://oak.conncoll.edu/cnham/Thesis.pdfHandt T., Kneser H.: Beispiele zur Iteration analytischer Funktionen. Mitt. Naturwiss. Ver. für Neuvorpommernund Rügen, Greifswald 57, 18–25 (1930)Heinrich T., Meise R.: A support theorem for quasianalytic functionals. Math. Nachr. 280(4), 364–387 (2007)Karlin S., McGregor J.: Embedding iterates of analytic functions with two fixed points into continuous group. Trans.Am. Math. Soc. 132, 137–145 (1968)Kneser H.: Reelle analytische Lösungen der Gleichung φ(φ(x))=ex{\varphi(\varphi(x))=e^x} φ ( φ ( x ) ) = e x und verwandter Funktionalgleichungen. J. Reine Angew. Math. 187, 56–67 (1949)Königs, G.: Recherches sur les intégrales de certaines équations fonctionnelles. Ann. Sci. Ecole Norm. Sup. (3) 1, Supplément, 3–41 (1884)Kuczma M.: Functional Equations in a Single Variable. PWN-Polish Scientific Publishers, Warszawa (1968)Kuczma M., Choczewski B., Ger R.: Iterative Functional Equations. Cambridge University Press, Cambridge (1990)Meise R., Vogt D.: Introduction to Functional Analysis. Clarendon Press, Oxford (1997)Milnor, J.: Dynamics in One Complex Variable. Vieweg, Braunschweig (2006)Schröder E.: über iterierte Funktionen. Math. Ann. 3, 296–322 (1871)Shapiro J.H.: Composition Operators and Classical Function Theory, Universitext: Tracts in Mathematics. Springer, New York (1993)Shapiro, J.H.: Notes on the dynamics of linear operators. Lecture Notes. http://www.mth.msu.edu/~hapiro/Pubvit/Downloads/LinDynamics/LynDynamics.htmlShapiro, J.H.: Composition operators and Schröder functional equation. In: Studies on Composition Operators (Laramie, WY, 1996), Contemp. Math., vol. 213, pp. 213–228. Am. Math. Soc., Providence (1998)Szekeres G.: Regular iteration of real and complex functions. Acta Math. 100, 203–258 (1958)Szekeres G.: Fractional iteration of exponentially growing functions. J. Aust. Math. Soc. 2, 301–320 (1961)Szekeres G.: Fractional iteration of entire and rational functions. J. Aust. Math. Soc. 4, 129–142 (1964)Szekeres G.: Abel’s equations and regular growth: variations on a theme by Abel. Exp. Math. 7, 85–100 (1998)Trappmann H., Kouznetsov D.: Uniqueness of holomorphic Abel function at a complex fixed point pair. Aequ. Math. 81, 65–76 (2011)Viro, O.: 1-manifolds. Bull. Manifold Atlas. http://www.boma.mpim-bonn.mpg.de/articles/48 (a prolonged version also http://www.map.mpim-bonn.mpg.de/1-manifolds#Differential_structures )Walker P.L.: A class of functional equations which have entire solutions. Bull. Aust. Math. Soc. 39, 351–356 (1988)Walker P.L.: The exponential of iteration of e x −1. Proc. Am. Math. Soc. 110, 611–620 (1990)Walker P.L.: On the solution of an Abelian functional equation. J. Math. Anal. Appl. 155, 93–110 (1991)Walker P.L.: Infinitely differentiable generalized logarithmic and exponential functions. Math. Comp. 57, 723–733 (1991
    corecore