19 research outputs found

    Spectral isolation of naturally reductive metrics on simple Lie groups

    Full text link
    We show that within the class of left-invariant naturally reductive metrics MNat⁥(G)\mathcal{M}_{\operatorname{Nat}}(G) on a compact simple Lie group GG, every metric is spectrally isolated. We also observe that any collection of isospectral compact symmetric spaces is finite; this follows from a somewhat stronger statement involving only a finite part of the spectrum.Comment: 19 pages, new title and abstract, revised introduction, new result demonstrating that any collection of isospectral compact symmetric spaces must be finite, to appear Math Z. (published online Dec. 2009

    Closed geodesics in Alexandrov spaces of curvature bounded from above

    Full text link
    In this paper, we show a local energy convexity of W1,2W^{1,2} maps into CAT(K)CAT(K) spaces. This energy convexity allows us to extend Colding and Minicozzi's width-sweepout construction to produce closed geodesics in any closed Alexandrov space of curvature bounded from above, which also provides a generalized version of the Birkhoff-Lyusternik theorem on the existence of non-trivial closed geodesics in the Alexandrov setting.Comment: Final version, 22 pages, 2 figures, to appear in the Journal of Geometric Analysi

    Can one see the fundamental frequency of a drum?

    Full text link
    We establish two-sided estimates for the fundamental frequency (the lowest eigenvalue) of the Laplacian in an open subset G of R^n with the Dirichlet boundary condition. This is done in terms of the interior capacitary radius of G which is defined as the maximal possible radius of a ball B which has a negligible intersection with the complement of G. Here negligibility of a subset F in B means that the Wiener capacity of F does not exceed gamma times the capacity of B, where gamma is an arbitrarily fixed constant between 0 and 1. We provide explicit values of constants in the two-sided estimates.Comment: 18 pages, some misprints correcte

    Energy transfer in a fast-slow Hamiltonian system

    Get PDF
    We consider a finite region of a lattice of weakly interacting geodesic flows on manifolds of negative curvature and we show that, when rescaling the interactions and the time appropriately, the energies of the flows evolve according to a non linear diffusion equation. This is a first step toward the derivation of macroscopic equations from a Hamiltonian microscopic dynamics in the case of weakly coupled systems

    The geodesic flow of a nonpositively curved graph manifold

    No full text

    On the generation of smooth three-dimensional rigid body motions

    No full text

    Partial C 0-Estimate for KĂ€hler–Einstein Metrics

    No full text
    corecore