69 research outputs found

    Predicting Management Effects on Ammonia Emissions from Dairy and Beef Farms

    Get PDF
    Relationships were developed to predict ammonia (NH3) nitrogen losses from cattle manure in animal housing, during manure storage, following field application, and during grazing. Ammonia loss in each phase was predicted using a mechanistic model for NH3 volatilized from the surface of an aqueous solution of ammonium where the NH3 is transported to the free atmosphere through a pathway with finite resistance. Ammonia emission rate was a function of the ammoniacal N content in the manure, ambient temperature, manure pH, manure moisture content, and the exposed manure surface area. Model relationships were calibrated by selecting values for the resistance to NH3 transport for the various loss pathways, which predicted daily and annual emissions similar to those reported in published studies. In further evaluation, these calibrated relationships predicted average annual losses similar to those documented in previous work over a range in climate locations. These relationships were integrated into a whole-farm simulation model to provide a tool for evaluating and comparing long-term nitrogen losses along with other performance, environmental, and economic aspects of farm production. Whole-farm simulations illustrated that the use of a free stall barn, bottom-loaded slurry storage, and direct injection of manure into the soil reduced NH3 emissions by 33% to 50% compared to other commonly used dairy housing and manure handling systems in the northeastern U.S. The improvement in nitrogen utilization more than offset the increased cost in manure handling, providing a small increase in farm profit. The farm model provides a research and teaching tool for evaluating and comparing the economic and environmental sustainability of dairy and beef production systems

    Ammonia emissions from dairy lagoons in the western U.S.

    Get PDF
    Ammonia (NH3) emissions from dairy liquid storage systems can be a source of reactive nitrogen (N) released to the environment with a potential to adversely affect sensitive ecosystems and human health. However, there has been little on-farm research conducted to estimate these emissions and determine the factors that may affect these emissions. Six lagoons in south-central Idaho were monitored for one year, with NH3 emissions estimated by inverse dispersion modeling. Lagoon characteristics thought to contribute to NH3 emissions were also monitored over this time period. Average daily emissions from the lagoons ranged from 5.7 to 45 kg NH3 /ha or 5.7 to 96 kg NH3. There was a general trend for greater emissions during the summer, when temperatures were greater, in addition high wind events and agitation of the lagoons created temporary increases in NH3 emissions irrespective of temperature. Lagoon physicochemical characteristics such as total Kjeldahl nitrogen (TKN) and total ammoniacal nitrogen (TAN) were highly correlated with emission. Ammonia emission prediction models were developed using TKN, TAN, wind speed, air temperature and pH as independent variables. An on farm N balance suggests that lagoon NH3-N losses represented 9% of total N lost from the facility, 65% of the total lagoon N and 5% of dairy herd N intake. A process based model estimated similar values for N excretion and NH3-N loss from the lagoon. On-farm work is necessary to better refine both process based models and emission factor estimates in order to more accurately account for NH3 emissions from lagoons on dairies in the western US

    Incidence, Risk Factors, and Outcomes of Patients Who Develop Mucosal Barrier Injury-Laboratory Confirmed Bloodstream Infections in the First 100 Days after Allogeneic Hematopoietic Stem Cell Transplant

    Get PDF
    Importance: Patients undergoing hematopoietic stem cell transplant (HSCT) are at risk for bloodstream infection (BSI) secondary to translocation of bacteria through the injured mucosa, termed mucosal barrier injury-laboratory confirmed bloodstream infection (MBI-LCBI), in addition to BSI secondary to indwelling catheters and infection at other sites (BSI-other). Objective: To determine the incidence, timing, risk factors, and outcomes of patients who develop MBI-LCBI in the first 100 days after HSCT. Design, Setting, and Participants: A case-cohort retrospective analysis was performed using data from the Center for International Blood and Marrow Transplant Research database on 16875 consecutive pediatric and adult patients receiving a first allogeneic HSCT from January 1, 2009, to December 31, 2016. Patients were classified into 4 categories: MBI-LCBI (1481 [8.8%]), MBI-LCBI and BSI-other (698 [4.1%]), BSI-other only (2928 [17.4%]), and controls with no BSI (11768 [69.7%]). Statistical analysis was performed from April 5 to July 17, 2018. Main Outcomes and Measures: Demographic characteristics and outcomes, including overall survival, chronic graft-vs-host disease, and transplant-related mortality (only for patients with malignant disease), were compared among groups. Results: Of the 16875 patients in the study (9737 [57.7%] male; median [range] age, 47 [0.04-82] years) 13686 (81.1%) underwent HSCT for a malignant neoplasm, and 3189 (18.9%) underwent HSCT for a nonmalignant condition. The cumulative incidence of MBI-LCBI was 13% (99% CI, 12%-13%) by day 100, and the cumulative incidence of BSI-other was 21% (99% CI, 21%-22%) by day 100. Median (range) time from transplant to first MBI-LCBI was 8 (<1 to 98) days vs 29 (<1 to 100) days for BSI-other. Multivariable analysis revealed an increased risk of MBI-LCBI with poor Karnofsky/Lansky performance status (hazard ratio [HR], 1.21 [99% CI, 1.04-1.41]), cord blood grafts (HR, 2.89 [99% CI, 1.97-4.24]), myeloablative conditioning (HR, 1.46 [99% CI, 1.19-1.78]), and posttransplant cyclophosphamide graft-vs-host disease prophylaxis (HR, 1.85 [99% CI, 1.38-2.48]). One-year mortality was significantly higher for patients with MBI-LCBI (HR, 1.81 [99% CI, 1.56-2.12]), BSI-other (HR, 1.81 [99% CI, 1.60-2.06]), and MBI-LCBI plus BSI-other (HR, 2.65 [99% CI, 2.17-3.24]) compared with controls. Infection was more commonly reported as a cause of death for patients with MBI-LCBI (139 of 740 [18.8%]), BSI (251 of 1537 [16.3%]), and MBI-LCBI plus BSI (94 of 435 [21.6%]) than for controls (566 of 4740 [11.9%]). Conclusions and Relevance: In this cohort study, MBI-LCBI, in addition to any BSIs, were associated with significant morbidity and mortality after HSCT. Further investigation into risk reduction should be a clinical and scientific priority in this patient population

    Identifying challenges and opportunities for improved nutrient management through U.S.D.A's Dairy Agroecosystem Working Group

    Get PDF
    Nutrient management is a priority of U.S. dairy farms, although specific concerns vary across regions and management systems. To elucidate challenges and opportunities to improving nutrient use efficiencies, the USDA’s Dairy Agroecosystems Working Group investigated 10 case studies of confinement (including open lots and free stall housing) and grazing operations in the seven major U.S. dairy producing states. Simulation modeling was carried out using the Integrated Farm Systems Model over 25 years of historic weather data. Dairies with a preference for importing feed and exporting manure, common for simulated dry lot dairies of the arid west, had lower nutrient use efficiencies at the farm gate than freestall and tie-stall dairies in humid climates. Phosphorus (P) use efficiencies ranged from 33 to 82% of imported P, while N use efficiencies were 25 to 50% of imported N. When viewed from a P budgeting perspective, environmental losses of P were generally negligible, especially from dry lot dairies. Opportunities for greater P use efficiency reside primarily in increasing on-farm feed production and reducing excess P in diets. In contrast with P, environmental losses of nitrogen (N) were 50 to 75% of annual farm N inputs. For dry lot dairies, the greatest potential for N conservation is associated with ammonia (NH3) control from housing, whereas for freestall and tie-stall operations, N conservation opportunities vary with soil and manure management system. Given that fertilizer expenses are equivalent to 2 to 6% of annual farm profits, cost incentives do exist to improve nutrient use efficiencies. However, augmenting on-farm feed production represents an even greater opportunity, especially on large operations with high animal unit densities
    • …
    corecore