827 research outputs found

    The history of introduction of the African baobab (Adansonia digitata, Malvaceae: Bombacoideae) in the Indian subcontinent

    Get PDF
    To investigate the pathways of introduction of the African baobab, Adansonia digitata, to the Indian subcontinent, we examined 10 microsatellite loci in individuals from Africa, India, the Mascarenes and Malaysia, and matched this with historical evidence of human interactions between source and destination regions. Genetic analysis showed broad congruence of African clusters with biogeographic regions except along the Zambezi (Mozambique) and Kilwa (Tanzania), where populations included a mixture of individuals assigned to at least two different clusters. Individuals from West Africa, the Mascarenes, southeast India and Malaysia shared a cluster. Baobabs from western and central India clustered separately from Africa. Genetic diversity was lower in populations from the Indian subcontinent than in African populations, but the former contained private alleles. Phylogenetic analysis showed Indian populations were closest to those from the Mombasa-Dar es Salaam coast. The genetic results provide evidence of multiple introductions of African baobabs to the Indian subcontinent over a longer time period than previously assumed. Individuals belonging to different genetic clusters in Zambezi and Kilwa may reflect the history of trafficking captives from inland areas to supply the slave trade between the fifteenth and nineteenth centuries. Baobabs in the Mascarenes, southeast India and Malaysia indicate introduction from West Africa through eighteenth and nineteenth century European colonial networks

    Cryo-EM studies of Drp1 reveal cardiolipin interactions that activate the helical oligomer

    Get PDF
    Dynamins are mechano-chemical GTPases involved in the remodeling of cellular membranes. In this study, we have investigated the mechanism of dynamin-related protein 1 (Drp1), a key mediator of mitochondrial fission. To date, it is unclear how Drp1 assembles on the mitochondrial outer membrane in response to different lipid signals to induce membrane fission. Here, we present cryo-EM structures of Drp1 helices on nanotubes with distinct lipid compositions to mimic membrane interactions with the fission machinery. These Drp1 polymers assemble exclusively through stalk and G-domain dimerizations, which generates an expanded helical symmetry when compared to other dynamins. Interestingly, we found the characteristic gap between Drp1 and the lipid bilayer was lost when the mitochondrial specific lipid cardiolipin was present, as Drp1 directly interacted with the membrane. Moreover, this interaction leads to a change in the helical structure, which alters G-domain interactions to enhance GTPase activity. These results demonstrate how lipid cues at the mitochondrial outer membrane (MOM) can alter Drp1 structure to activate the fission machinery

    The impact of patient travel time on disparities in treatment for early stage lung cancer in California

    Get PDF
    Background Travel time to treatment facilities may impede the receipt of guideline-concordant treatment (GCT) among patients diagnosed with early-stage non-small cell lung cancer (ES-NSCLC). We investigated the relative contribution of travel time in the receipt of GCT among ES-NSCLC patients. Methods We included 22,821 ES-NSCLC patients diagnosed in California from 2006–2015. GCT was defined using the 2016 National Comprehensive Cancer Network guidelines, and delayed treatment was defined as treatment initiation >6 versus ≤6 weeks after diagnosis. Mean-centered driving and public transit times were calculated from patients’ residential block group centroid to the treatment facilities. We used logistic regression to estimate risk ratios and 95% confidence intervals (CIs) for the associations between patients’ travel time and receipt of GCT and timely treatment, overall and by race/ethnicity and neighborhood socioeconomic status (nSES). Results Overall, a 15-minute increase in travel time was associated with a decreased risk of undertreatment and delayed treatment. Compared to Whites, among Blacks, a 15-minute increase in driving time was associated with a 24% (95%CI = 8%-42%) increased risk of undertreatment, and among Filipinos, a 15-minute increase in public transit time was associated with a 27% (95%CI = 13%-42%) increased risk of delayed treatment. Compared to the highest nSES, among the lowest nSES, 15-minute increases in driving and public transit times were associated with 33% (95%CI = 16%-52%) and 27% (95%CI = 16%-39%) increases in the risk of undertreatment and delayed treatment, respectively. Conclusion The benefit of GCT observed with increased travel times may be a ‘Travel Time Paradox,’ and may vary across racial/ethnic and socioeconomic groups

    Electron-electron interactions and two-dimensional - two-dimensional tunneling

    Full text link
    We derive and evaluate expressions for the dc tunneling conductance between interacting two-dimensional electron systems at non-zero temperature. The possibility of using the dependence of the tunneling conductance on voltage and temperature to determine the temperature-dependent electron-electron scattering rate at the Fermi energy is discussed. The finite electronic lifetime produced by electron-electron interactions is calculated as a function of temperature for quasiparticles near the Fermi circle. Vertex corrections to the random phase approximation substantially increase the electronic scattering rate. Our results are in an excellent quantitative agreement with experiment.Comment: Revtex style, 21 pages and 8 postscript figures in a separate file; Phys. Rev. B (in press

    Childhood Adversity Moderates Change in Latent Patterns of Psychological Adjustment during the COVID-19 Pandemic: Results of a Survey of U.S. Adults

    Get PDF
    Emerging evidence suggests that the consequences of childhood adversity impact later psychopathology by increasing individuals’ risk of experiencing difficulties in adjusting to stressful situations later in life. The goals of this study were to: (a) identify sociodemographic factors associated with subgroups of psychological adjustment prior to and after the onset of the COVID-19 pandemic and (b) examine whether and to what extent types of childhood adversity predict transition probabilities. Participants were recruited via multiple social media platforms and listservs. Data were collected via an internet-based survey. Our analyses reflect 1942 adults (M = 39.68 years); 39.8% reported experiencing at least one form of childhood adversity. Latent profile analyses (LPAs) and latent transition analyses (LTAs) were conducted to determine patterns of psychological adjustment and the effects of childhood adversity on transition probabilities over time. We identified five subgroups of psychological adjustment characterized by symptom severity level. Participants who were younger in age and those who endorsed marginalized identities exhibited poorer psychological adjustment during the pandemic. Childhood exposure to family and community violence and having basic needs met as a child (e.g., food, shelter) significantly moderated the relation between latent profile membership over time. Clinical and research implications are discussed

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity

    Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism

    Full text link
    We explore with self-consistent 2D F{\sc{ornax}} simulations the dependence of the outcome of collapse on many-body corrections to neutrino-nucleon cross sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and neutrino-nucleon scattering. Importantly, proximity to criticality amplifies the role of even small changes in the neutrino-matter couplings, and such changes can together add to produce outsized effects. When close to the critical condition the cumulative result of a few small effects (including seeds) that individually have only modest consequence can convert an anemic into a robust explosion, or even a dud into a blast. Such sensitivity is not seen in one dimension and may explain the apparent heterogeneity in the outcomes of detailed simulations performed internationally. A natural conclusion is that the different groups collectively are closer to a realistic understanding of the mechanism of core-collapse supernovae than might have seemed apparent.Comment: 25 pages; 10 figure
    corecore