5 research outputs found

    Geochemistry of Vein Calcites Hosted in the Troodos Pillow Lavas and Their Implications for the Timing and Physicochemical Environment of Fracturing, Fluid Circulation, and Vein Mineral Growth

    Get PDF
    Calcite veins hosted in pillow lavas of the Late Cretaceous Troodos suprasubduction zone ophiolite provide insights into the timing and physicochemical environment of postmagmatic fracturing and fluid circulation through oceanic crust. This study presents rare earth element and yttrium (REE+Y) concentrations, δ13C, δ18O, 87Sr/86Sr, and clumped isotopic (Δ47) compositions of vein calcites in order to investigate their fluid sources, formation temperatures, and precipitation ages. These geochemical data are combined with microtextural analyses. Intersections of 87Sr/86Sr ratios of vein calcites with the Sr isotope seawater curve suggest two distinct calcite veining phases. Major calcite veining within an interval of ~10 Myr after crust formation is characterized by microtextures that point to extensional fracturing related to crack and sealing, host rock brecciation, and advective fluid flow. These vein calcites show REE+Y characteristics, 87Sr/86Sr ratios, and clumped isotopic compositions indicative of precipitation from seawater at <50 °C. Extended fluid residence times intensified fluid‐rock interactions and lowered Y/Ho ratios of some blocky vein calcites, whereas crack and sealing resulted in pristine seawater signatures. Low 87Sr/86Sr ratios of localized high‐temperature blocky vein calcites point to the involvement of hydrothermal fluids. These calcites show Mn‐controlled oscillatory growth zonations that probably developed in a closed system out of equilibrium. Later calcite veining (<75 Ma) may have coincided with rotation and/or uplift of the Troodos ophiolite. Microtextures of these vein calcites indicate fluid diffusion and fracture‐independent crystallization pressure‐driven veining. Their variably modified seawater signatures resulted from diffusion‐related fluid interaction with hydrothermal sediments

    Synthetic hydrogels as scaffolds for manipulating endothelium cell behaviors

    Get PDF
    Synthetic hydrogels can be used as scaffolds that not only favor endothelial cells (ECs) proliferation but also manipulate the behaviors and functions of the ECs. In this review paper, the effect of chemical structure, Young's modulus (E) and zeta potential (ζ) of synthetic hydrogel scaffolds on static cell behaviors, including cell morphology, proliferation, cytoskeleton structure and focal adhesion, and on dynamic cell behaviors, including migration velocity and morphology oscillation, as well as on EC function such as anti-platelet adhesion, are reported. It was found that negatively charged hydrogels, poly(2-acrylamido-2-methylpropanesulfonic sodium) (PNaAMPS) and poly(sodium p-styrene sulphonate) (PNaSS), can directly promote cell proliferation, with no need of surface modification by any cell-adhesive proteins or peptides at the environment of serum-containing medium. In addition, the Young's modulus (E) and zeta potential (ζ) of hydrogel scaffolds are quantitatively tuned by copolymer hydrogels, poly(NaAMPS-co-DMAAm) and poly(NaSS-co-DMAAm), in which the two kinds of negatively charged monomers NaAMPS and NaSS are copolymerized with neutral monomer, N,N-dimethylacrylamide (DMAAm). It was found that the critical zeta potential of hydrogels manipulating EC morphology, proliferation, and motility is ζcritical = -20.83 mV and ζcritical = -14.0 mV for poly(NaAMPS-co-DMAAm) and poly(NaSS-co-DMAAm), respectively. The above mentioned EC behaviors well correlate with the adsorption of fibronectin, a kind of cell-adhesive protein, on the hydrogel surfaces. Furthermore, adhered platelets on the EC monolayers cultured on the hydrogel scaffolds obviously decreases with an increase of the Young's modulus (E) of the hydrogels, especially when E > 60 kPa. Glycocalyx assay and gene expression of ECs demonstrate that the anti-platelet adhesion well correlates with the EC-specific glycocalyx. The above investigation suggests that understanding the relationship between physic-chemical properties of synthetic hydrogels and cell responses is essential to design optimal soft & wet scaffolds for tissue engineering
    corecore